SwingWrapper: Retiling triangle meshes for better EdgeBreaker compression

被引:18
作者
Attene, M
Falcidieno, B
Spagnuolo, M
Rossignac, J
机构
[1] CNR, IMATI, I-16149 Genoa, Italy
[2] Georgia Inst Technol, Coll Comp, Atlanta, GA 30332 USA
来源
ACM TRANSACTIONS ON GRAPHICS | 2003年 / 22卷 / 04期
关键词
algorithms; triangle mesh; geometry compression; simplification; retiling; remeshing;
D O I
10.1145/944020.944022
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We focus on the lossy compression of manifold triangle meshes. Our SwingWrapper approach partitions the surface of an original mesh M into simply connected regions, called triangloids. From these, we generate a new mesh M'. Each triangle of M' is an approximation of a triangloid of M. By construction, the connectivity of M' is fairly regular and can be compressed to less than a bit per triangle using EdgeBreaker or one of the other recently developed schemes. The locations of the vertices of M' are compactly encoded with our new prediction technique, which uses a single correction parameter per vertex. SwingWrapper strives to reach a user-defined output file size rather than to guarantee a given error bound. For a variety of popular models, a rate of 0.4 bits/triangle yields an L-2 distortion of about 0.01% of the bounding box diagonal. The proposed solution may also be used to encode crude meshes for adaptive transmission or for controlling subdivision surfaces.
引用
收藏
页码:982 / 996
页数:15
相关论文
共 44 条
[1]  
ALGORII ME, 1996, P EUR 96, P78
[2]  
Alliez P, 2001, COMP GRAPH, P195, DOI 10.1145/383259.383281
[3]  
ALLIEZ P, 2001, P EUR, P480
[4]  
ATIENE M, 2001, P SHAP MOD INT C, P142
[5]  
ATIENE M, 2002, 62002 IMA
[6]  
Bajaj C. L., 1999, Proceedings Visualization '99 (Cat. No.99CB37067), P307, DOI 10.1109/VISUAL.1999.809902
[7]   Topology preserving data simplification with error bounds [J].
Bajaj, CL ;
Schikore, DR .
COMPUTERS & GRAPHICS-UK, 1998, 22 (01) :3-12
[8]  
BAJAJ CL, 1999, P IEEE DAT COMPR C
[9]  
BOTSCH M, 2001, P VIS MOD VIS VMV01
[10]  
CHEN JD, 1990, PROCEEDINGS OF THE SIXTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY, P360, DOI 10.1145/98524.98601