Brownian Dynamics Simulations of Ion Transport through the VDAC

被引:45
作者
Lee, Kyu Il [1 ,2 ]
Rui, Huan [1 ,2 ]
Pastor, Richard W. [3 ]
Im, Wonpil [1 ,2 ]
机构
[1] Univ Kansas, Ctr Bioinformat, Lawrence, KS 66045 USA
[2] Univ Kansas, Dept Mol Biosci, Lawrence, KS 66045 USA
[3] NHLBI, Lab Computat Biol, NIH, Bethesda, MD 20892 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
ALPHA-HEMOLYSIN; MITOCHONDRIAL CHANNEL; MOLECULAR-DYNAMICS; SELECTIVITY; PERMEATION; PROTEIN; MEMBRANE; MODELS; FAMILY;
D O I
10.1016/j.bpj.2010.12.3708
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
It is important to gain a physical understanding of ion transport through the voltage-dependent anion channel (VDAC) because this channel provides primary permeation pathways for metabolites and electrolytes between the cytosol and mitochondria. We performed grand canonical Monte Carlo/Brownian dynamics (GCMC/BD) simulations to explore the ion transport properties of human VDAC isoform 1 (hVDAC1; PDB:2K4T) embedded in an implicit membrane. When the MD-derived, space-dependent diffusion constant was used in the GCMC/BD simulations, the current-voltage characteristics and ion number profiles inside the pore showed excellent agreement with those calculated from all-atom molecular-dynamics (MD) simulations, thereby validating the GCMC/BD approach. Of the 20 NMR models of hVDAC1 currently available, the third one (NMR03) best reproduces both experimental single-channel conductance and ion selectivity (i.e., the reversal potential). In addition, detailed analyses of the ion trajectories, one-dimensional multi-ion potential of mean force, and protein charge distribution reveal that electrostatic interactions play an important role in the channel structure and ion transport relationship. Finally, the GCMC/BD simulations of various mutants based on NMR03 show good agreement with experimental ion selectivity. The difference in ion selectivity between the wild-type and the mutants is the result of altered potential of mean force profiles that are dominated by the electrostatic interactions.
引用
收藏
页码:611 / 619
页数:9
相关论文
共 34 条
[1]   Imaging α-hemolysin with molecular dynamics:: Ionic conductance, osmotic permeability, and the electrostatic potential map [J].
Aksimentiev, A ;
Schulten, K .
BIOPHYSICAL JOURNAL, 2005, 88 (06) :3745-3761
[2]   Structure of the human voltage-dependent anion channel [J].
Bayrhuber, Monika ;
Meins, Thomas ;
Habeck, Michael ;
Becker, Stefan ;
Giller, Karin ;
Villinger, Saskia ;
Vonrhein, Clemens ;
Griesinger, Christian ;
Zweckstetter, Markus ;
Zeth, Kornelius .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (40) :15370-15375
[3]   SELECTIVITY CHANGES IN SITE-DIRECTED MUTANTS OF THE VDAC ION CHANNEL - STRUCTURAL IMPLICATIONS [J].
BLACHLYDYSON, E ;
PENG, SZ ;
COLOMBINI, M ;
FORTE, M .
SCIENCE, 1990, 247 (4947) :1233-1236
[4]   The Electrostatics of VDAC: Implications for Selectivity and Gating [J].
Choudhary, Om P. ;
Ujwal, Rachna ;
Kowallis, William ;
Coalson, Rob ;
Abramson, Jeff ;
Grabe, Michael .
JOURNAL OF MOLECULAR BIOLOGY, 2010, 396 (03) :580-592
[5]   Three computational methods for studying permeation, selectivity and dynamics in biological ion channels [J].
Chung, SH ;
Corry, B .
SOFT MATTER, 2005, 1 (06) :417-427
[6]   Conducting-state properties of the KcsA potassium channel from molecular and Brownian dynamics simulations [J].
Chung, SH ;
Allen, TW ;
Kuyucak, S .
BIOPHYSICAL JOURNAL, 2002, 82 (02) :628-645
[7]   VOLTAGE GATING IN THE MITOCHONDRIAL CHANNEL, VDAC [J].
COLOMBINI, M .
JOURNAL OF MEMBRANE BIOLOGY, 1989, 111 (02) :103-111
[8]   VDAC: The channel at the interface between mitochondria and the cytosol [J].
Colombini, M .
MOLECULAR AND CELLULAR BIOCHEMISTRY, 2004, 256 (1-2) :107-115
[9]   The published 3D structure of the VDAC channel: native or not? [J].
Colombini, Marco .
TRENDS IN BIOCHEMICAL SCIENCES, 2009, 34 (08) :382-389
[10]   PARTICLE MESH EWALD - AN N.LOG(N) METHOD FOR EWALD SUMS IN LARGE SYSTEMS [J].
DARDEN, T ;
YORK, D ;
PEDERSEN, L .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (12) :10089-10092