AMSR2 Soil Moisture Downscaling Using Temperature and Vegetation Data

被引:47
作者
Fang, Bin [1 ]
Lakshmi, Venkat [1 ]
Bindlish, Rajat [2 ]
Jackson, Thomas J. [3 ]
机构
[1] Univ South Carolina, Sch Earth Ocean & Environm, Columbia, SC 29208 USA
[2] NASA, Hydrol Sci Branch, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[3] USDA, Hydrol & Remote Sensing Lab, Beltsville Agr Res Ctr, Beltsville, MD 20705 USA
关键词
AMSR2; passive microwave soil moisture; soil moisture downscaling; DATA ASSIMILATION SYSTEM; SOUTHERN GREAT-PLAINS; CLIMATE REFERENCE NETWORK; LAND-SURFACE; VALIDATION; RESOLUTION; RETRIEVAL; RADIOMETER; NLDAS; SMOS;
D O I
10.3390/rs10101575
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Soil moisture (SM) applications in terrestrial hydrology require higher spatial resolution soil moisture products than those provided by passive microwave remote sensing instruments (grid resolution of 9 km or larger). In this investigation, an innovative algorithm that uses visible/infrared remote sensing observations to downscale Advanced Microwave Scanning Radiometer 2 (AMSR2) coarse spatial resolution SM products was developed and implemented for use with data provided by the Advanced Microwave Scanning Radiometer 2 (AMSR2). The method is based on using the Normalized Difference Vegetation Index (NDVI) modulated relationships between day/night SM and temperature change at corresponding times. Land surface model output variables from the North America Land Data Assimilation System (NLDAS), remote sensing data from the Moderate-Resolution Imaging Spectroradiometer (MODIS), and Advanced Very High Resolution Radiometer (AVHRR) were used in this methodology. The functional relationships developed using NLDAS data at a grid resolution of 12.5 km were applied to downscale AMSR2 JAXA (Japan Aerospace Exploration Agency) SM product (25 km) using MODIS land surface temperature (LST) and NDVI observations (1 km) to produce the 1 km SM estimates. The downscaled SM estimates were validated by comparing them with ISMN (International Soil Moisture Network) in situ SM in the Black Bear-Red Rock watershed, central Oklahoma between 2015-2017. The overall statistical variables of the downscaled AMSR2 SM validation R-2, slope, RMSE and bias, demonstrate good accuracy. The downscaled SM better characterized the spatial and temporal variability of SM at watershed scales than the original SM product.
引用
收藏
页数:20
相关论文
共 83 条
[11]   AN INTERPRETATION OF METHODOLOGIES FOR INDIRECT MEASUREMENT OF SOIL-WATER CONTENT [J].
CARLSON, TN ;
GILLIES, RR ;
SCHMUGGE, TJ .
AGRICULTURAL AND FOREST METEOROLOGY, 1995, 77 (3-4) :191-205
[12]   Assessment of the SMAP Passive Soil Moisture Product [J].
Chan, Steven K. ;
Bindlish, Rajat ;
O'Neill, Peggy E. ;
Njoku, Eni ;
Jackson, Tom ;
Colliander, Andreas ;
Chen, Fan ;
Burgin, Mariko ;
Dunbar, Scott ;
Piepmeier, Jeffrey ;
Yueh, Simon ;
Entekhabi, Dara ;
Cosh, Michael H. ;
Caldwell, Todd ;
Walker, Jeffrey ;
Wu, Xiaoling ;
Berg, Aaron ;
Rowlandson, Tracy ;
Pacheco, Anna ;
McNairn, Heather ;
Thibeault, Marc ;
Martinez-Fernandez, Jose ;
Gonzalez-Zamora, Angel ;
Seyfried, Mark ;
Bosch, David ;
Starks, Patrick ;
Goodrich, David ;
Prueger, John ;
Palecki, Michael ;
Small, Eric E. ;
Zreda, Marek ;
Calvet, Jean-Christophe ;
Crow, Wade T. ;
Kerr, Yann .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (08) :4994-5007
[13]   First Assessment of the Advanced Microwave Scanning Radiometer 2 (AMSR2) Soil Moisture Contents in Northeast Asia [J].
Cho, Eunsang ;
Moon, Heewon ;
Choi, Minha .
JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN, 2015, 93 (01) :117-129
[14]   A microwave-optical/infrared disaggregation for improving spatial representation of soil moisture using AMSR-E and MODIS products [J].
Choi, Minha ;
Hur, Yoomi .
REMOTE SENSING OF ENVIRONMENT, 2012, 124 :259-269
[15]   EFFECT OF SURFACE-ROUGHNESS ON THE MICROWAVE EMISSION FROM SOILS [J].
CHOUDHURY, BJ ;
SCHMUGGE, TJ ;
CHANG, A ;
NEWTON, RW .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1979, 84 (NC9) :5699-5706
[16]   Multi-Profile Analysis of Soil Moisture within the US Climate Reference Network [J].
Coopersmith, E. J. ;
Cosh, M. H. ;
Bell, J. E. ;
Crow, W. T. .
VADOSE ZONE JOURNAL, 2016, 15 (01)
[17]   Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project [J].
Cosgrove, BA ;
Lohmann, D ;
Mitchell, KE ;
Houser, PR ;
Wood, EF ;
Schaake, JC ;
Robock, A ;
Marshall, C ;
Sheffield, J ;
Duan, QY ;
Luo, LF ;
Higgins, RW ;
Pinker, RT ;
Tarpley, JD ;
Meng, J .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D22)
[18]   Watershed scale temporal and spatial stability of soil moisture and its role in validating satellite estimates [J].
Cosh, MH ;
Jackson, TJ ;
Bindlish, R ;
Prueger, JH .
REMOTE SENSING OF ENVIRONMENT, 2004, 92 (04) :427-435
[19]   U.S. CLIMATE REFERENCE NETWORK AFTER ONE DECADE OF OPERATIONS STATUS AND ASSESSMENT [J].
Diamond, Howard J. ;
Karl, Thomas R. ;
Palecki, Michael A. ;
Baker, C. Bruce ;
Bell, Jesse E. ;
Leeper, Ronald D. ;
Easterling, David R. ;
Lawrimore, Jay H. ;
Meyers, Tilden P. ;
Helfert, Michael R. ;
Goodge, Grant ;
Thorne, Peter W. .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2013, 94 (04) :485-498
[20]   Global Automated Quality Control of In Situ Soil Moisture Data from the International Soil Moisture Network [J].
Dorigo, W. A. ;
Xaver, A. ;
Vreugdenhil, M. ;
Gruber, A. ;
Hegyiova, A. ;
Sanchis-Dufau, A. D. ;
Zamojski, D. ;
Cordes, C. ;
Wagner, W. ;
Drusch, M. .
VADOSE ZONE JOURNAL, 2013, 12 (03)