Absence of Ergodicity without Quenched Disorder: From Quantum Disentangled Liquids to Many-Body Localization

被引:90
作者
Smith, A. [1 ]
Knolle, J. [1 ]
Moessner, R. [2 ]
Kovrizhin, D. L. [3 ,4 ]
机构
[1] Cavendish Lab, TCM Grp, JJ Thomson Ave, Cambridge CB3 0HE, England
[2] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
[3] Rudolf Peierls Ctr Theoret Phys, 1 Keble Rd, Oxford OX1 3NP, England
[4] NRC Kurchatov Inst, 1 Kurchatov Sq, Moscow 123182, Russia
基金
英国工程与自然科学研究理事会;
关键词
THERMALIZATION; TRANSITION; SYSTEMS; LATTICE;
D O I
10.1103/PhysRevLett.119.176601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the time evolution after a quantum quench in a family of models whose degrees of freedom are fermions coupled to spins, where quenched disorder appears neither in the Hamiltonian parameters nor in the initial state. Focusing on the behavior of entanglement, both spatial and between subsystems, we show that the model supports a state exhibiting combined area and volume-law entanglement, being characteristic of the quantum disentangled liquid. This behavior appears for one set of variables, which is related via a duality mapping to another set, where this structure is absent. Upon adding density interactions between the fermions, we identify an exact mapping to an XXZ spin chain in a random binary magnetic field, thereby establishing the existence of many-body localization with its logarithmic entanglement growth in a fully disorder-free system.
引用
收藏
页数:5
相关论文
共 34 条
[1]   Universal Dynamics and Renormalization in Many-Body-Localized Systems [J].
Altman, Ehud ;
Vosk, Ronen .
ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 6, 2015, 6 :383-409
[2]   Quasiparticle lifetime in a finite system: A nonperturbative approach [J].
Altshuler, BL ;
Gefen, Y ;
Kamenev, A ;
Levitov, LS .
PHYSICAL REVIEW LETTERS, 1997, 78 (14) :2803-2806
[3]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[4]   Purification and Many-Body Localization in Cold Atomic Gases [J].
Andraschko, Felix ;
Enss, Tilman ;
Sirker, Jesko .
PHYSICAL REVIEW LETTERS, 2014, 113 (21)
[5]   Unbounded Growth of Entanglement in Models of Many-Body Localization [J].
Bardarson, Jens H. ;
Pollmann, Frank ;
Moore, Joel E. .
PHYSICAL REVIEW LETTERS, 2012, 109 (01)
[6]   Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states [J].
Basko, DM ;
Aleiner, IL ;
Altshuler, BL .
ANNALS OF PHYSICS, 2006, 321 (05) :1126-1205
[7]  
BLOCH I, COMMUNICATION
[8]   QUANTUM SIMULATION Exploring the many-body localization transition in two dimensions [J].
Choi, Jae-yoon ;
Hild, Sebastian ;
Zeiher, Johannes ;
Schauss, Peter ;
Rubio-Abadal, Antonio ;
Yefsah, Tarik ;
Khemani, Vedika ;
Huse, David A. ;
Bloch, Immanuel ;
Gross, Christian .
SCIENCE, 2016, 352 (6293) :1547-1552
[9]   Many-body localization in infinite chains [J].
Enss, T. ;
Andraschko, F. ;
Sirker, J. .
PHYSICAL REVIEW B, 2017, 95 (04)
[10]   Quench dynamics and relaxation in isolated integrable quantum spin chains [J].
Essler, Fabian H. L. ;
Fagotti, Maurizio .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,