Developments in Surface/Interface Engineering of Ni-Rich Layered Cathode Materials

被引:19
作者
Wang, Xiaomei [1 ]
Ruan, Xiaopeng [1 ]
Du, Cheng-Feng [2 ]
Yu, Hong [1 ]
机构
[1] Northwestern Polytech Univ, Ctr Adv Lubricat & Seal Mat, State Key Lab Solidificat Proc, Xian 710072, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Chongqing Technol Innovat Ctr, Chongqing 400000, Peoples R China
基金
中国国家自然科学基金;
关键词
Ni-rich cathode material; Surface engineering; Failure mechanisms; Lithium-ion batteries; POSITIVE-ELECTRODE MATERIALS; ENHANCED ELECTROCHEMICAL PERFORMANCE; TRANSITION-METAL DISSOLUTION; LI-ION BATTERIES; HIGH-VOLTAGE; HIGH-ENERGY; LINI0.6CO0.2MN0.2O2; CATHODE; LINI0.5CO0.2MN0.3O2; THERMAL-STABILITY; LITHIUM BATTERIES;
D O I
10.1002/tcr.202200119
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ni-rich layered cathodes with high energy densities reveal an enormous potential for lithium-ion batteries (LIBs), however, their poor stability and reliability have inhibited their application. To ensure their stability over extensive cycles at high voltage, surface/interface modifications are necessary to minimize the adverse reactions at the cathode-electrolyte interface (CEI), which is a critical factor impeding electrode performance. Therefore, this review provides a comprehensive discussion on the surface engineering of Ni-rich cathode materials for enhancing their lithium storage property. Based on the structural characteristics of the Ni-rich cathode, the major failure mechanisms of these structures during synthesis and operation are summarized. Then the existing surface modification techniques are discussed and compared. Recent breakthroughs in various surface coatings and modification strategies are categorized and their unique functionalities in structural protection and performance-enhancing are elaborated. Finally, the challenges and outlook on the Ni-rich cathode materials are also proposed.
引用
收藏
页数:15
相关论文
共 151 条
[11]   Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode [J].
Bi, Yujing ;
Tao, Jinhui ;
Wu, Yuqin ;
Li, Linze ;
Xu, Yaobin ;
Hu, Enyuan ;
Wu, Bingbin ;
Hu, Jiangtao ;
Wang, Chongmin ;
Zhan, Ji-Guang ;
Qi, Yue ;
Xiao, Jie .
SCIENCE, 2020, 370 (6522) :1313-+
[12]   Issues and Challenges Facing Flexible Lithium-Ion Batteries for Practical Application [J].
Cha, Hyungyeon ;
Kim, Junhyeok ;
Lee, Yoonji ;
Cho, Jaephil ;
Park, Minjoon .
SMALL, 2018, 14 (43)
[13]   The Origin of Capacity Fade in the Li2MnO3•LiMO2 (M = Li, Ni, Co, Mn) Microsphere Positive Electrode: An Operando Neutron Diffraction and Transmission X-ray Microscopy Study [J].
Chen, Chih-Jung ;
Pang, Wei Kon ;
Mori, Tatsuhiro ;
Peterson, Vanessa K. ;
Sharma, Neeraj ;
Lee, Po-Han ;
Wu, She-huang ;
Wang, Chun-Chieh ;
Song, Yen-Fang ;
Liu, Ru-Shi .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (28) :8824-8833
[14]   Improve the structure and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode material by nano-Al2O3 ultrasonic coating [J].
Chen, Yanping ;
Zhang, Yun ;
Wang, Fu ;
Wang, Zongyi ;
Zhang, Qiang .
JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 611 :135-141
[15]   Effect of Residual Lithium Compounds on Layer Ni-Rich Li[Ni0.7Mn0.3]O2 [J].
Cho, Dae-Hyun ;
Jo, Chang-Heum ;
Cho, Woosuk ;
Kim, Young-Jun ;
Yashiro, Hitoshi ;
Sun, Yang-Kook ;
Myung, Seung-Taek .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (06) :A920-A926
[16]   A New Type of Protective Surface Layer for High-Capacity Ni-Based Cathode Materials: Nanoscaled Surface Pillaring Layer [J].
Cho, Yonghyun ;
Oh, Pilgun ;
Cho, Jaephil .
NANO LETTERS, 2013, 13 (03) :1145-1152
[17]   Spinel-Layered Core-Shell Cathode Materials for Li-Ion Batteries [J].
Cho, Yonghyun ;
Lee, Sanghan ;
Lee, Yongseok ;
Hong, Taeeun ;
Cho, Jaephil .
ADVANCED ENERGY MATERIALS, 2011, 1 (05) :821-828
[18]   Role of chemical and structural stabilities on the electrochemical properties of layered LiNi1/3Mn1/3Co1/3O2 cathodes [J].
Choi, J ;
Manthiram, A .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (09) :A1714-A1718
[19]   Ultrathin-Y2O3-coated LiNi0.8Co0.1Mn0.1O2 as cathode materials for Li-ion batteries: Synthesis, performance and reversibility [J].
Dai, Shican ;
Yuan, Mingliang ;
Wang, Long ;
Luo, Liming ;
Chen, Qichao ;
Xie, Tangfeng ;
Li, Yaping ;
Yang, Yuting .
CERAMICS INTERNATIONAL, 2019, 45 (01) :674-680
[20]   Jahn-Teller mediated ordering in layered LixMO2 compounds [J].
de Dompablo, MEAY ;
Marianetti, C ;
Van der Ven, A ;
Ceder, G .
PHYSICAL REVIEW B, 2001, 63 (14)