Critical behavior of the relaxation rate, the susceptibility, and a pair correlation function in the Kuramoto model on scale-free networks

被引:31
|
作者
Yoon, S. [1 ,2 ]
Sindaci, M. Sorbaro [3 ,4 ]
Goltsev, A. V. [1 ,2 ,5 ]
Mendes, J. F. F. [1 ,2 ]
机构
[1] Univ Aveiro, Dept Fis, P-3800 Aveiro, Portugal
[2] Univ Aveiro, I3N, P-3800 Aveiro, Portugal
[3] Univ Pavia, Dipartmento Fis, I-27100 Pavia, Italy
[4] Univ Edinburgh, Sch Informat, Inst Adapt & Neural Computat, Edinburgh EH8 9YL, Midlothian, Scotland
[5] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
来源
PHYSICAL REVIEW E | 2015年 / 91卷 / 03期
关键词
COUPLED OSCILLATORS; COMPLEX NETWORKS; FIELDS; SYNCHRONIZATION; POPULATION; DYNAMICS; SYSTEMS;
D O I
10.1103/PhysRevE.91.032814
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the impact of network heterogeneity on relaxation dynamics of the Kuramoto model on uncorrelated complex networks with scale-free degree distributions. Using the Ott-Antonsen method and the annealed-network approach, we find that the critical behavior of the relaxation rate near the synchronization phase transition does not depend on network heterogeneity and critical slowing down takes place at the critical point when the second moment of the degree distribution is finite. In the case of a complete graph we obtain an explicit result for the relaxation rate when the distribution of natural frequencies is Lorentzian. We also find a response of the Kuramoto model to an external field and show that the susceptibility of the model is inversely proportional to the relaxation rate. We reveal that network heterogeneity strongly impacts a field dependence of the relaxation rate and the susceptibility when the network has a divergent fourth moment of degree distribution. We introduce a pair correlation function of phase oscillators and show that it has a sharp peak at the critical point, signaling emergence of long-range correlations. Our numerical simulations of the Kuramoto model support our analytical results.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Critical behavior of the XY model on growing scale-free networks
    Kwak, Wooseop
    Yang, Jae-Suk
    Sohn, Jang-il
    Kim, In-mook
    PHYSICAL REVIEW E, 2007, 75 (06)
  • [2] Critical behavior of the XY model on static scale-free networks
    Yang, Jae-Suk
    Kwak, Wooseop
    Goh, Kwang-Il
    Kim, In-Mook
    EPL, 2008, 84 (03)
  • [3] Critical behavior of the Ising model in annealed scale-free networks
    Lee, Sang Hoon
    Ha, Meesoon
    Jeong, Hawoong
    Noh, Jae Dong
    Park, Hyunggyu
    PHYSICAL REVIEW E, 2009, 80 (05)
  • [4] Synchronization of Kuramoto oscillators in scale-free networks
    Moreno, Y
    Pacheco, AF
    EUROPHYSICS LETTERS, 2004, 68 (04): : 603 - 609
  • [5] Onset of synchronization of Kuramoto oscillators in scale-free networks
    Peron, Thomas
    de Resende, Bruno Messias F.
    Mata, Angelica S.
    Rodrigues, Francisco A.
    Moreno, Yamir
    PHYSICAL REVIEW E, 2019, 100 (04)
  • [6] Pair correlations in scale-free networks
    Huang, ZX
    Wang, XR
    Zhu, H
    CHINESE PHYSICS, 2004, 13 (03): : 273 - 278
  • [8] Effects of Correlation between Network Structure and Dynamics of Oscillators on Synchronization Transition in a Kuramoto Model on Scale-Free Networks
    Yu Dan
    Yang Jun-Zhong
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2014, 61 (02) : 197 - 202
  • [9] Critical behavior of the contact process in annealed scale-free networks
    Noh, Jae Dong
    Park, Hyunggyu
    PHYSICAL REVIEW E, 2009, 79 (05):
  • [10] Relaxation dynamics of scale-free polymer networks
    Galiceanu, M.
    PHYSICAL REVIEW E, 2012, 86 (04)