Evaluation of the Polyaniline Based Nanocomposite Modified with Graphene Nanosheet, Carbon Nanotube, and Pt Nanoparticle as a Material for Supercapacitor

被引:49
作者
Golikand, A. Nozad [1 ,2 ]
Bagherzadeh, M. [3 ]
Shirazi, Z. [4 ]
机构
[1] NSTRI, Jaber Res Lab, Tehran, Iran
[2] Islamic Azad Univ, Shahre E Qods Branch, Dept Chem, Tehran, Iran
[3] NSTRI, Mat & Nucl Fuel Res Sch, Esfahan 814651589, Iran
[4] Yazd Univ, Dept Chem, Fac Sci, Yazd 89195741, Iran
基金
美国国家科学基金会;
关键词
Supercapacitor; Graphene nanosheets; CNT; PANI; Pt nanoparticles; ELECTROCHEMICAL CAPACITANCE PERFORMANCE; SELF-ASSEMBLED MONOLAYER; ELECTRODE MATERIAL; MESOPOROUS CARBON; COMPOSITES; SURFACE; OXIDE; BATTERIES; STORAGE; SILVER;
D O I
10.1016/j.electacta.2017.07.011
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Here, ternary and quaternary polyaniline (PANI) based nanocomposites were synthesized, via reduction of platinum nanoparticles into a modified PANI with graphene nanosheets (GNS) and/or carbon nanotubes (CNT). The morphology and chemical composition of the prepared nanocomposites were characterized by using XRD, EDXA, FT-IR, SEM, and TEM techniques. The electrochemical properties of the resulting nanocomposites in comparison to pure PANI were systematically studied by using cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS) tests, for the first time. A remarkable average electrode specific capacity as 3450C g(-1) (based on PANI/GNS/CNT/Pt nanocomposites) was obtained in 1 M H2SO4 solution in comparison to 1123, 952, 366 and 284C g(-1) for PANI/GNS/Pt, PANI/GNS/CNT, PANI/CNT/Pt and pure PANI, respectively. Observed outstanding performance for the quaternary nanocomposites, is not only due to the presence of GNS and CNT which can offer good electrical conductivity, but also associate with a high surface area and conductivity dedicated from Pt nanoparticles and a high redox activity of PANI. Furthermore, the PANI/GNS/CNT/Pt nanocomposite present excellent long cycle life with 84.8% specific capacity retained after 1000 charge-discharge processes. The observed high performance of PANI/GNS/CNT/Pt electrode makes it attractive for the development of high-efficiency electrochemical energy storage devices. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:116 / 124
页数:9
相关论文
共 50 条
[1]   Redox Electrolytes in Supercapacitors [J].
Akinwolemiwa, Bamidele ;
Peng, Chuang ;
Chen, George Z. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (05) :A5054-A5059
[2]   Optimum reaction conditions for in situ polyaniline films [J].
Ayad, MM ;
Salahuddin, N ;
Sheneshin, MA .
SYNTHETIC METALS, 2003, 132 (02) :185-190
[3]   Fabrication and electrochemical characterization of dopamine-sensing electrode based on modified graphene nanosheets [J].
Bagherzadeh, M. ;
Mozaffari, S. A. ;
Momeni, M. .
ANALYTICAL METHODS, 2015, 7 (21) :9317-9323
[4]  
Bagherzadeh M., 2015, RSC ADV, V5
[5]  
Bagherzadeh M., 2015, ADV MAT BOOK SERIES
[6]   Electrochemical and surface evaluation of the anti-corrosion properties of reduced graphene oxide [J].
Bagherzadeh, Mojtaba ;
Ghahfarokhi, Zahra Shams ;
Yazdi, Ebrahim Ghiamati .
RSC ADVANCES, 2016, 6 (26) :22007-22015
[7]   Electrochemical detection of dopamine based on pre-concentration by graphene nanosheets [J].
Bagherzadeh, Mojtaba ;
Heydari, Maryam .
ANALYST, 2013, 138 (20) :6044-6051
[8]   To Be or Not To Be Pseudocapacitive? [J].
Brousse, Thierry ;
Belanger, Daniel ;
Long, Jeffrey W. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (05) :A5185-A5189
[9]   Polyaniline-deposited porous carbon electrode for supercapacitor [J].
Chen, WC ;
Wen, TC ;
Teng, HS .
ELECTROCHIMICA ACTA, 2003, 48 (06) :641-649
[10]   Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices [J].
Conway, BE ;
Pell, WG .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2003, 7 (09) :637-644