Injectable Multifunctional Drug Delivery System for Hard Tissue Regeneration under Inflammatory Microenvironments

被引:29
作者
Bordini, Ester A. F. [1 ]
Ferreira, Jessica A. [1 ]
Dubey, Nileshkumar [1 ]
Ribeiro, Juliana S. [1 ]
de Souza Costa, Carlos A. [2 ]
Soares, Diana G. [3 ]
Bottino, Marco C. [1 ,4 ]
机构
[1] Univ Michigan, Sch Dent, Dept Cariol Restorat Sci & Endodont, Ann Arbor, MI 48109 USA
[2] Univ Estadual Paulista UNESP, Araraquara Sch Dent, Dept Physiol & Pathol, BR-14801903 Araraquara, SP, Brazil
[3] Sao Paulo Univ USP, Bauru Sch Dent, Dept Operat Dent Endodont & Dent Mat, BR-17012901 Bauru, SP, Brazil
[4] Univ Michigan, Dept Biomed Engn, Coll Engn, Ann Arbor, MI 48109 USA
基金
巴西圣保罗研究基金会; 美国国家卫生研究院;
关键词
dexamethasone; gelatin methacryloyl; hydrogel; regeneration; dentin; bone; DENTAL-PULP CELLS; HALLOYSITE CLAY NANOTUBES; STEM-CELLS; ALKALINE-PHOSPHATASE; REINFORCED HYDROGEL; BONE REGENERATION; DEXAMETHASONE; SCAFFOLDS; PROMOTE; RELEASE;
D O I
10.1021/acsabm.1c00620
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Engineering multifunctional hydrogel systems capable of amplifying the regenerative capacity of endogenous progenitor cells via localized presentation of therapeutics under tissue inflammation is central to the translation of effective strategies for hard tissue regeneration. Here, we loaded dexamethasone (DEX), a pleotropic drug with anti-inflammatory and mineralizing abilities, into aluminosilicate day nanotubes (halloysite clay nanotubes (HNTs)) to engineer an injectable multifunctional drug delivery system based on photo-cross-linkable gelatin methacryloyl (GelMA) hydrogel. In detail, a series of hydrogels based on GelMA formulations containing distinct amounts of DEX-loaded nanotubes was analyzed for physicochemical and mechanical properties and kinetics of DEX release as well as compatibility with mesenchymal stem cells from human exfoliated deciduous teeth (SHEDs). The anti-inflammatory response and mineralization potential of the engineered hydrogels were determined in vitro and in vivo. DEX conjugation with HNTs was confirmed by FTIR analysis. The incorporation of DEX-loaded nanotubes enhanced the mechanical strength of GelMA with no effect on its degradation and swelling ratio. Scanning electron microscopy (SEM) images demonstrated the porous architecture of GelMA, which was not significantly altered by DEX-loaded nanotubes' (HNTs/DEX) incorporation. All GelMA formulations showed cytocompatibility with SHEDs (p < 0.05) regardless of the presence of HNTs or HNTs/DEX. However, the highest osteogenic cell differentiation was noticed with the addition of HNT/DEX 10% in GelMA formulations (p < 0.01). The controlled release of DEX over 7 days restored the expression of alkaline phosphatase and mineralization (p < 0.0001) in lipopolysaccharide (LPS)-stimulated SHEDs in vitro. Importantly, in vivo data revealed that DEX-loaded nanotube-modified GelMA (5.0% HNT/DEX 10%) led to enhanced bone formation after 6 weeks (p < 0.0001) compared to DEX-free formulations with a minimum localized inflammatory response after 7 days. Altogether, our findings show that the engineered DEX-loaded nanotube-modified hydrogel may possess great potential to trigger in situ mineralized tissue regeneration under inflammatory conditions.
引用
收藏
页码:6993 / 7006
页数:14
相关论文
共 97 条
[1]   Effect of SrR delivery in the biomarkers of bone regeneration during the in vitro degradation of HNT/GN coatings prepared by EPD [J].
Abdollahi Boraei, Seyyed Behnam ;
Nourmohammadi, Jhamak ;
Mandavi, Fatemeh Sadat ;
Yus, Joaquin ;
Ferrandez-Montero, A. ;
Javier Sanchez-Herencia, Antonio ;
Gonzalez, Zoilo ;
Ferrari, Begona .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2020, 190
[2]  
Alongi DJ, 2010, REGEN MED, V5, P617, DOI [10.2217/rme.10.30, 10.2217/RME.10.30]
[3]   A dentin-derived hydrogel bioink for 3D bioprinting of cell laden scaffolds for regenerative dentistry [J].
Athirasala, Avathamsa ;
Tahayeri, Anthony ;
Thrivikraman, Greeshma ;
Franca, Cristiane M. ;
Monteiro, Nelson ;
Tran, Victor ;
Ferracane, Jack ;
Bertassoni, Luiz E. .
BIOFABRICATION, 2018, 10 (02)
[4]  
Behnia Ali, 2014, World J Stem Cells, V6, P505, DOI 10.4252/wjsc.v6.i4.505
[5]   Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels [J].
Bertassoni, Luiz E. ;
Cardoso, Juliana C. ;
Manoharan, Vijayan ;
Cristino, Ana L. ;
Bhise, Nupura S. ;
Araujo, Wesleyan A. ;
Zorlutuna, Pinar ;
Vrana, Nihal E. ;
Ghaemmaghami, Amir M. ;
Dokmeci, Mehmet R. ;
Khademhosseini, Ali .
BIOFABRICATION, 2014, 6 (02)
[6]   Advances in cartilage repair: The influence of inorganic clays to improve mechanical and healing properties of antibacterial Gellan gum-Manuka honey hydrogels [J].
Bonifacio, Maria A. ;
Cochis, Andrea ;
Cometa, Stefania ;
Scalzone, Annachiara ;
Gentile, Piergiorgio ;
Procino, Giuseppe ;
Milano, Serena ;
Scalia, Alessandro C. ;
Rimondini, Lia ;
De Giglio, Eivira .
MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2020, 108
[7]   Dental pulp stem cells and Bonelike® for bone regeneration in ovine model [J].
Campos, J. M. ;
Sousa, A. C. ;
Caseiro, A. R. ;
Pedrosa, S. S. ;
Pinto, P. O. ;
Branquinho, M. V. ;
Amorim, I. ;
Santos, J. D. ;
Pereira, T. ;
Mendonca, C. M. ;
Afonso, A. ;
Atayde, L. M. ;
Mauricio, A. C. .
REGENERATIVE BIOMATERIALS, 2019, 6 (01) :49-59
[8]   Impact of RGD micro-patterns on cell adhesion [J].
Chollet, C. ;
Lazare, S. ;
Guillemot, F. ;
Durrieu, M. C. .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2010, 75 (01) :107-114
[9]   Regulating substrate mechanics to achieve odontogenic differentiation for dental pulp stem cells on TiO2 filled and unfilled polyisoprene [J].
Chuang, Ya-Chen ;
Yu, Yingjie ;
Wei, Ming-Tzo ;
Chang, Chung-Chueh ;
Ricotta, Vincent ;
Feng, Kuan-Che ;
Wang, Likun ;
Bherwani, Aneel K. ;
Ou-Yang, H. Daniel ;
Simon, Marcia ;
Zhang, Liudi ;
Rafailovich, Miriam .
ACTA BIOMATERIALIA, 2019, 89 :60-72
[10]   Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks [J].
Cidonio, Gianluca ;
Alcala-Orozco, Cesar R. ;
Lim, Khoon S. ;
Glinka, Michael ;
Mutreja, Isha ;
Kim, Yang-Hee ;
Dawson, Jonathan, I ;
Woodfield, Tim B. F. ;
Oreffo, Richard O. C. .
BIOFABRICATION, 2019, 11 (03)