Effect of beam types on the scintillations: A review

被引:18
作者
Baykal, Yahya [1 ]
Eyyuboglu, Halil T. [1 ]
Cai, Yangjian [2 ]
机构
[1] Cankaya Univ, Elect & Commun Engn Dept, Ogretmenler Cad 14, TR-06530 Yuzuncuyil, Balgat Ankara, Turkey
[2] Univ Erlangen Nurnberg, Inst Opt Informat & Photon, Max Planck Res Grp, D-91058 Erlangen, Germany
来源
ATMOSPHERIC PROPAGATION OF ELECTROMAGNETIC WAVES III | 2009年 / 7200卷
关键词
Atmospheric turbulence; general beams; atmospheric optics telecommunication links; scintillations; RANDOM ELECTROMAGNETIC BEAMS; GAUSSIAN LASER-BEAMS; DARK HOLLOW BEAMS; INTENSITY FLUCTUATIONS; PARTIALLY COHERENT; ATMOSPHERIC-TURBULENCE; INDEX; WEAK; WAVE; PROPAGATION;
D O I
10.1117/12.811848
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
When different incidences are launched in atmospheric turbulence, it is known that the intensity fluctuations exhibit different characteristics. In this paper we review our work done in the evaluations of the scintillation index of general beam types when such optical beams propagate in horizontal atmospheric links in the weak fluctuations regime. Variation of scintillation indices versus the source and medium parameters are examined for flat-topped-Gaussian, cosh-Gaussian, cos-Gaussian, annular, elliptical Gaussian, circular (i.e., stigmatic) and elliptical (i.e., astigmatic) dark hollow, lowest order Bessel-Gaussian and laser array beams. For flat-topped-Gaussian beam, scintillation is larger than the single Gaussian beam scintillation, when the source sizes are much less than the Fresnel zone but becomes smaller for source sizes much larger than the Fresnel zone. Cosh-Gaussian beam has lower on-axis scintillations at smaller source sizes and longer propagation distances as compared to Gaussian beams where focusing imposes more reduction on the cosh-Gaussian beam scintillations than that of the Gaussian beam. Intensity fluctuations of a cos-Gaussian beam show favorable behaviour against a Gaussian beam at lower propagation lengths. At longer propagation lengths, annular beam becomes advantageous. In focused cases, the scintillation index of annular beam is lower than the scintillation index of Gaussian and cos-Gaussian beams starting at earlier propagation distances. Cos-Gaussian beams are advantages at relatively large source sizes while the reverse is valid for annular beams. Scintillations of a stigmatic or astigmatic dark hollow beam can be smaller when compared to stigmatic or astigmatic Gaussian, annular and flat-topped beams under conditions that are closely related to the beam parameters. Intensity fluctuation of an elliptical Gaussian beam can also be smaller than a circular Gaussian beam depending on the propagation length and the ratio of the beam waist size along the long axis to that along the short axis (i.e., astigmatism). Comparing against the fundamental Gaussian beam on equal source size and equal power basis, it is observed that the scintillation index of the lowest order Bessel-Gaussian beam is lower at large source sizes and large width parameters. However, for excessively large width parameters and beyond certain propagation lengths, the advantage of the lowest order Bessel-Gaussian beam seems to be lost. Compared to Gaussian beam, laser array beam exhibits less scintillations at long propagation ranges and at some midrange radial displacement parameters. When compared among themselves, laser array beams tend to have reduced scintillations for larger number of beamlets, longer wavelengths, midrange radial displacement parameters, intermediate Gaussian source sizes, larger inner scales and smaller outer scales of turbulence. The number of beamlets used does not seem to be so effective in this improvement of the scintillations.
引用
收藏
页数:15
相关论文
共 63 条
  • [1] Andrews L C, 2001, Laser beam scintillation with applicationsM
  • [2] Andrews L. C., 2005, SPIE, V2nd, DOI DOI 10.1117/3.626196
  • [3] Theory of optical scintillation: Gaussian-beam wave model
    Andrews, LC
    Al-Habash, MA
    Hopen, CY
    Phillips, RL
    [J]. WAVES IN RANDOM MEDIA, 2001, 11 (03): : 271 - 291
  • [4] Simulator for general-type beam propagation in turbulent atmosphere
    Arpali, Caglar
    Yazicioglu, Canan
    Eyyuboglu, Halil Tanyer
    Arpali, Serap Altay
    Baykal, Yahya
    [J]. OPTICS EXPRESS, 2006, 14 (20): : 8918 - 8928
  • [5] Scintillation index of higher-order cos-Gaussian, cosh-Gaussian and annular beams
    Arpali, Serap Altay
    Eyyuboglu, Halil T.
    Baykal, Yahya
    [J]. JOURNAL OF MODERN OPTICS, 2008, 55 (02) : 227 - 239
  • [6] Banakh V. A., 1978, Soviet Journal of Quantum Electronics, V8, P875, DOI 10.1070/QE1978v008n07ABEH010449
  • [7] FOCUSED-LASER-BEAM SCINTILLATIONS IN TURBULENT ATMOSPHERE
    BANAKH, VA
    KREKOV, GM
    MIRONOV, VL
    KHMELEVT.SS
    TSVIK, RS
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1974, 64 (04) : 516 - 518
  • [9] Formulation of correlations for general-type beams in atmospheric turbulence
    Baykal, Y
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2006, 23 (04) : 889 - 893
  • [10] BAYKAL Y, 1982, IEEE T ANTENN PROPAG, V30, P802, DOI 10.1109/TAP.1982.1142849