Strain-resolved analysis of hospital rooms and infants reveals overlap between the human and room microbiome

被引:158
作者
Brooks, Brandon [1 ]
Olm, Matthew R. [1 ]
Firek, Brian A. [2 ]
Baker, Robyn [3 ]
Thomas, Brian C. [4 ,5 ]
Morowitz, Michael J. [2 ]
Banfield, Jillian F. [4 ,5 ]
机构
[1] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA
[2] Univ Pittsburgh, Sch Med, Dept Surg, Pittsburgh, PA 15261 USA
[3] UPMC, Magee Womens Hosp Pittsburgh, Div Newborn Med, Pittsburgh, PA 15224 USA
[4] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Environm Sci Policy & Management, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
GUT; FASTER;
D O I
10.1038/s41467-017-02018-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Preterm infants exhibit different microbiome colonization patterns relative to full-term infants, and it is speculated that the hospital room environment may contribute to infant microbiome development. Here, we present a genome-resolved metagenomic study of microbial genotypes from the gastrointestinal tracts of infants and from the neonatal intensive care unit (NICU) room environment. Some strains detected in hospitalized infants also occur in sinks and on surfaces, and belong to species such as Staphylococcus epidermidis, Enterococcus faecalis, Pseudomonas aeruginosa, and Klebsiella pneumoniae, which are frequently implicated in nosocomial infection and preterm infant gut colonization. Of the 15 K. pneumoniae strains detected in the study, four were detected in both infant gut and room samples. Time series experiments showed that nearly all strains associated with infant gut colonization can be detected in the room after, and often before, detection in the gut. Thus, we conclude that a component of premature infant gut colonization is the cycle of microbial exchange between the room and the occupant.
引用
收藏
页数:7
相关论文
共 28 条
[1]  
Alneberg J, 2014, NAT METHODS, V11, P1144, DOI [10.1038/NMETH.3103, 10.1038/nmeth.3103]
[2]   Microbes in the neonatal intensive care unit resemble those found in the gut of premature infants [J].
Brooks, Brandon ;
Firek, Brian A. ;
Miller, Christopher S. ;
Sharon, Itai ;
Thomas, Brian C. ;
Baker, Robyn ;
Morowitz, Michael J. ;
Banfield, Jillian F. .
MICROBIOME, 2014, 2
[3]   Unusual biology across a group comprising more than 15% of domain Bacteria [J].
Brown, Christopher T. ;
Hug, Laura A. ;
Thomas, Brian C. ;
Sharon, Itai ;
Castelle, Cindy J. ;
Singh, Andrea ;
Wilkins, Michael J. ;
Wrighton, Kelly C. ;
Williams, Kenneth H. ;
Banfield, Jillian F. .
NATURE, 2015, 523 (7559) :208-U173
[4]   Search and clustering orders of magnitude faster than BLAST [J].
Edgar, Robert C. .
BIOINFORMATICS, 2010, 26 (19) :2460-2461
[5]   Development of the preterm infant gut microbiome: a research priority [J].
Groer, Maureen W. ;
Luciano, Angel A. ;
Dishaw, Larry J. ;
Ashmeade, Terri L. ;
Miller, Elizabeth ;
Gilbert, Jack A. .
MICROBIOME, 2014, 2
[6]   Prodigal: prokaryotic gene recognition and translation initiation site identification [J].
Hyatt, Doug ;
Chen, Gwo-Liang ;
LoCascio, Philip F. ;
Land, Miriam L. ;
Larimer, Frank W. ;
Hauser, Loren J. .
BMC BIOINFORMATICS, 2010, 11
[7]  
Joshi NA., 2011, Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files Software, DOI DOI 10.1016/J.YMETH.2016.02.020
[8]   Characterization of the Gut Microbiome Using 16S or Shotgun Metagenomics [J].
Jovel, Juan ;
Patterson, Jordan ;
Wang, Weiwei ;
Hotte, Naomi ;
O'Keefe, Sandra ;
Mitchel, Troy ;
Perry, Troy ;
Kao, Dina ;
Mason, Andrew L. ;
Madsen, Karen L. ;
Wong, Gane K-S .
FRONTIERS IN MICROBIOLOGY, 2016, 7
[9]   Data, information, knowledge and principle: back to metabolism in KEGG [J].
Kanehisa, Minoru ;
Goto, Susumu ;
Sato, Yoko ;
Kawashima, Masayuki ;
Furumichi, Miho ;
Tanabe, Mao .
NUCLEIC ACIDS RESEARCH, 2014, 42 (D1) :D199-D205
[10]  
Langmead B, 2012, NAT METHODS, V9, P357, DOI [10.1038/NMETH.1923, 10.1038/nmeth.1923]