Homology of Gaussian groups

被引:23
作者
Dehornoy, P [1 ]
Lafont, Y
机构
[1] Univ Caen, Lab Math Nicolas Oresme, F-14032 Caen, France
[2] Inst Math Luminy, F-13288 Marseille 9, France
关键词
free resolution; finite resolution; homology; contracting homotopy; Braid groups; Artin groups;
D O I
10.5802/aif.1951
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe new combinatorial methods for constructing explicit free resolutions of Z by ZG-modules when G is a group of fractions of a monoid where enough lest common multiples exist ("locally Gaussian monoid"), and therefore, for computing the homology of G. Our constructions apply in particular to all Artin-Tits groups of finite Coexter type. Technically, the proofs rely on the properties of least common multiples in a monoid.
引用
收藏
页码:489 / +
页数:53
相关论文
共 47 条
[1]   FRAGMENTS OF THE WORD DELTA-IN A BRAID GROUP [J].
ADYAN, SI .
MATHEMATICAL NOTES, 1984, 36 (1-2) :505-510
[2]   A geometric rational form for Artin groups of FC type [J].
Altobelli, J ;
Charney, R .
GEOMETRIAE DEDICATA, 2000, 79 (03) :277-289
[3]  
[Anonymous], 1978, FUNCT ANAL APPL+
[4]  
[Anonymous], 1978, FUNKTSIONAL ANAL PRI
[5]  
[Anonymous], FUNCTIONAL ANAL APPL
[6]  
[Anonymous], FINITE STATE ALGORIT
[7]  
Arnold Vladimir Igorevich, 1969, MAT ZAMETKI, V5, P227
[8]  
BESSIS D, DUAL BRAID MONOID
[9]   Non-positively curved aspects of Artin groups of finite type [J].
Bestvina, Mladen .
GEOMETRY & TOPOLOGY, 1999, 3 :269-302
[10]   A new approach to the word and conjugacy problems in the braid groups [J].
Birman, J ;
Ko, KH ;
Lee, SJ .
ADVANCES IN MATHEMATICS, 1998, 139 (02) :322-353