Conformational equilibria in allosteric control of Hsp70 chaperones

被引:13
|
作者
Wang, Wei [1 ,2 ]
Liu, Qinglian [3 ]
Liu, Qun [4 ]
Hendrickson, Wayne A. [1 ,5 ]
机构
[1] Columbia Univ, Dept Biochem & Mol Biophys, 630 W 168th St, New York, NY 10032 USA
[2] Columbia Univ, Dept Biol Sci, New York, NY 10027 USA
[3] Virginia Commonwealth Univ, Dept Physiol & Biophys, Med Coll Virginia Campus, Richmond, VA 23298 USA
[4] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA
[5] Columbia Univ, Dept Physiol & Cellular Biophys, New York, NY 10032 USA
关键词
SUBSTRATE-BINDING; CRYSTAL-STRUCTURE; STRUCTURAL BASIS; PEPTIDE-BINDING; DNAK; PROTEINS; ATP; DOMAIN; MECHANISM; EXCHANGE;
D O I
10.1016/j.molcel.2021.07.039
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Heat-shock proteins of 70 kDa (Hsp70s) are vital for all life and are notably important in protein folding. Hsp70s use ATP binding and hydrolysis at a nucleotide-binding domain (NBD) to control the binding and release of client polypeptides at a substrate-binding domain (SBD); however, the mechanistic basis for this allostery has been elusive. Here, we first characterize biochemical properties of selected domain-interface mutants in bacterial Hsp70 DnaK. We then develop a theoretical model for allosteric equilibria among Hsp70 conformational states to explain the observations: a restraining state, Hsp70(R)-ATP, restricts ATP hydrolysis and binds peptides poorly, whereas a stimulating state, Hsp70(s)-ATP, hydrolyzes ATP rapidly and has high intrinsic substrate affinity but rapid binding kinetics. We support this model for allosteric regulation with DnaK structures obtained in the postulated stimulating state S with biochemical tests of the S-state interface and with improved peptide-binding-site definition in an R-state structure.
引用
收藏
页码:3919 / +
页数:23
相关论文
共 50 条
  • [31] Eukaryotic Hsp70 chaperones in the intermembrane space of chloroplasts
    Bionda, Tihana
    Gross, Lucia E.
    Becker, Thomas
    Papasotiriou, Dimitrios G.
    Leisegang, Matthias S.
    Karas, Michael
    Schleiff, Enrico
    PLANTA, 2016, 243 (03) : 733 - 747
  • [32] Hsp70 chaperones: Cellular functions and molecular mechanism
    Mayer, MP
    Bukau, B
    CELLULAR AND MOLECULAR LIFE SCIENCES, 2005, 62 (06) : 670 - 684
  • [33] Function, Therapeutic Potential, and Inhibition of Hsp70 Chaperones
    Ambrose, Andrew J.
    Chapman, Eli
    JOURNAL OF MEDICINAL CHEMISTRY, 2021, 64 (11) : 7060 - 7082
  • [34] Hsp90 and Hsp70 chaperones: Collaborators in protein remodeling
    Genest, Olivier
    Wickner, Sue
    Doyle, Shannon M.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2019, 294 (06) : 2109 - 2120
  • [35] The nucleotide exchange factors of Hsp70 molecular chaperones
    Bracher, Andreas
    Verghese, Jacob
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2015, 2
  • [36] A multipronged approach to the mechanism of allostery in Hsp70 chaperones
    Gierasch, LM
    Swain, JF
    Smock, RG
    Dinler, G
    FASEB JOURNAL, 2006, 20 (05): : A964 - A964
  • [37] ROLE OF HSP70 CHAPERONES IN PROTEIN-FOLDING
    FINK, AL
    FASEB JOURNAL, 1995, 9 (06): : A1251 - A1251
  • [38] Hsp70 Molecular Chaperones and Parkinson's Disease
    Witt, Stephan N.
    BIOPOLYMERS, 2010, 93 (03) : 218 - 228
  • [39] Allostery in Hsp70 Chaperones Is Transduced by Subdomain Rotations
    Bhattacharya, Akash
    Kurochkin, Alexander V.
    Yip, Grover N. B.
    Zhang, Yongbo
    Bertelsen, Eric B.
    Zuiderweg, Erik R. P.
    JOURNAL OF MOLECULAR BIOLOGY, 2009, 388 (03) : 475 - 490
  • [40] Conformational Dynamics of Hsp90 and Hsp70 Chaperones in Treating Neurodegenerative Diseases: Insights from the Drosophila Model
    Rai, Pooja
    PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY, 2024, 90 (03): : 628 - 637