Influence of Spatial Inhomogeneity of Detector Temporal Responses on the Spectral Fidelity in Continuous Wave Cavity Ringdown Spectroscopy

被引:2
作者
Cao, Zhensong [1 ]
Li, Zhixin [2 ]
Xu, Fei [3 ,4 ]
Wu, Yongqian [5 ]
Zhou, Zixin [1 ]
Tong, Zhaomin [3 ,4 ]
Ma, Weiguang [3 ,4 ]
Zhu, Wenyue [1 ]
机构
[1] Chinese Acad Sci, Anhui Inst Opt & Fine Mech, Key Lab Atmospher Opt, Hefei 230031, Peoples R China
[2] Shanxi Univ, Sch Software, Taiyuan 030006, Peoples R China
[3] Shanxi Univ, Inst Laser Spect, State Key Lab Quantum Opt & Quantum Opt Devices, Taiyuan 030006, Peoples R China
[4] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Peoples R China
[5] Chinese Acad Sci, Inst Opt & Elect, Chengdu 610209, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
cavity ringdown spectroscopy; spatial effect; temporal response; spectral fidelity; HETERODYNE MOLECULAR SPECTROMETRY; DOWN SPECTROSCOPY; WATER CLUSTERS; LASER; NOISE; RESOLUTION; RATIO;
D O I
10.3390/s19235232
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Due to their advantages of having a wide bandwidth, low cost, and being easy to obtain, traditional photodetectors (PDs) are being widely applied in measurements of transient signals. The spatial inhomogeneity of such PD temporal responses was measured directly to account for the PD spatial effect of decay rate due to poor alignment in continuous wave cavity ringdown spectroscopy (CW-CRDS) experiments. Based on the measurements of three PDs (i.e., model 1611 (Newport), model 1811 (Newport), and model PDA10CF-EC (Thorlabs)), all the temporal responses followed a tendency of declining first and then rising, and steady platforms existed for the last two PDs. Moreover, as we expected, the closer the PD center was, the faster the response. On the other hand, the initial shut-off amplitude generally reached a larger value for a faster temporal response. As a result, the spatial effect can strongly influence the spectral line shape and value, which will introduce more errors into the precise measurements of spectral parameters using the CRDS technique if this effect is not considered. The defined effective detection area (EDA) of the PDs, which was close to the active area given by manufacturers, was the key parameter that should be paid more attention by researchers. Therefore, the PD should be aligned perfectly to make sure that the EDA covers the laser spot completely.
引用
收藏
页数:12
相关论文
共 41 条
[1]   MIRROR REFLECTOMETER BASED ON OPTICAL CAVITY DECAY TIME [J].
ANDERSON, DZ ;
FRISCH, JC ;
MASSER, CS .
APPLIED OPTICS, 1984, 23 (08) :1238-1245
[2]   Cavity ringdown spectroscopy of the linear carbon chains HC7H, HC9H, HC11H, and HC13H [J].
Ball, CD ;
McCarthy, MC ;
Thaddeus, P .
JOURNAL OF CHEMICAL PHYSICS, 2000, 112 (23) :10149-10155
[3]   Cavity ring-down spectroscopy: Experimental schemes and applications [J].
Berden, G ;
Peeters, R ;
Meijer, G .
INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY, 2000, 19 (04) :565-607
[4]   Frequency domain analysis for laser-locked cavity ringdown spectroscopy [J].
Boyson, T. K. ;
Spence, T. G. ;
Calzada, M. E. ;
Harb, C. C. .
OPTICS EXPRESS, 2011, 19 (09) :8092-8101
[5]   High resolution pulsed infrared cavity ringdown spectroscopy:: Application to laser ablated carbon clusters [J].
Casaes, R ;
Provençal, R ;
Paul, J ;
Saykally, RJ .
JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (15) :6640-6647
[6]   Analysis of trace impurities in semiconductor gas via cavity-enhanced direct frequency comb spectroscopy [J].
Cossel, K. C. ;
Adler, F. ;
Bertness, K. A. ;
Thorpe, M. J. ;
Feng, J. ;
Raynor, M. W. ;
Ye, J. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2010, 100 (04) :917-924
[7]   High-speed cavity ringdown spectroscopy with increased spectral resolution by simultaneous laser and cavity tuning [J].
Debecker, I ;
Mohamed, AK ;
Romanini, D .
OPTICS EXPRESS, 2005, 13 (08) :2906-2915
[8]   Pressure-broadening coefficients and line strengths of H2O near 1.39 μm:: application to the in situ sensing of the middle atmosphere with balloonborne diode lasers [J].
Durry, G ;
Zeninari, V ;
Parvitte, B ;
Le barbu, T ;
Lefevre, F ;
Ovarlez, J ;
Gamache, RR .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2005, 94 (3-4) :387-403
[9]   Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry incorporating an optical circulator [J].
Ehlers, Patrick ;
Silander, Isak ;
Wang, Junyang ;
Foltynowicz, Aleksandra ;
Axner, Ove .
OPTICS LETTERS, 2014, 39 (02) :279-282
[10]   The HITRAN2016 molecular spectroscopic database [J].
Gordon, I. E. ;
Rothman, L. S. ;
Hill, C. ;
Kochanov, R. V. ;
Tan, Y. ;
Bernath, P. F. ;
Birk, M. ;
Boudon, V. ;
Campargue, A. ;
Chance, K. V. ;
Drouin, B. J. ;
Flaud, J. -M. ;
Gamache, R. R. ;
Hodges, J. T. ;
Jacquemart, D. ;
Perevalov, V. I. ;
Perrin, A. ;
Shine, K. P. ;
Smith, M. -A. H. ;
Tennyson, J. ;
Toon, G. C. ;
Tran, H. ;
Tyuterev, V. G. ;
Barbe, A. ;
Csaszar, A. G. ;
Devi, V. M. ;
Furtenbacher, T. ;
Harrison, J. J. ;
Hartmann, J. -M. ;
Jolly, A. ;
Johnson, T. J. ;
Karman, T. ;
Kleiner, I. ;
Kyuberis, A. A. ;
Loos, J. ;
Lyulin, O. M. ;
Massie, S. T. ;
Mikhailenko, S. N. ;
Moazzen-Ahmadi, N. ;
Mueller, H. S. P. ;
Naumenko, O. V. ;
Nikitin, A. V. ;
Polyansky, O. L. ;
Rey, M. ;
Rotger, M. ;
Sharpe, S. W. ;
Sung, K. ;
Starikova, E. ;
Tashkun, S. A. ;
Vander Auwera, J. .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2017, 203 :3-69