Ferromagnetic resonance and ac conductivity of a polymer composite of Fe3O4 and Fe3C nanoparticles dispersed in a graphite matrix -: art. no. 024304

被引:73
作者
Guskos, N [1 ]
Anagnostakis, EA
Likodimos, V
Bodziony, T
Typek, J
Maryniak, M
Narkiewicz, U
Kucharewicz, I
Waplak, S
机构
[1] Univ Athens, Dept Phys, Athens 15784, Greece
[2] Natl Tech Univ Athens, Dept Phys, Athens 15780, Greece
[3] Tech Univ Szczecin, Inst Phys, PL-70310 Szczecin, Poland
[4] Tech Univ Szczecin, Inst Chem & Environm Engn, PL-70322 Szczecin, Poland
[5] Polish Acad Sci, Inst Mol Phys, Poznan, Poland
关键词
D O I
10.1063/1.1836855
中图分类号
O59 [应用物理学];
学科分类号
摘要
Ferromagnetic resonance (FMR) and ac conductivity have been applied to study a polymer composite containing as filler a binary mixture of magnetite (Fe3O4) and cementite (Fe3C) nanoparticles (30-50 nm) dispersed in a diamagnetic carbon matrix, which was synthesized by the carburization of nanocrystalline iron. Ac conductivity measurements showed thermally activated behavior involving a range of activation energies and power law frequency dependence at high frequencies similar to conducting polymer composites randomly filled with metal particles. Ferromagnetic resonance measurements revealed a relatively narrow FMR line at high temperatures indicating the presence of ferromagnetic nanoparticles, where thermal fluctuations and interparticle interactions determine the FMR temperature variation. An abrupt change of the FMR spectra was observed at T<81 K (DeltaTless than or equal to1 K) coinciding with a sharp anomaly resolved in the temperature derivative of the ac conductivity. This behavior is attributed to the Verwey transition of Fe3O4 nanoparticles, where the concurrent skin depth variation unveils the FMR of large magnetite conglomerates and thus allows discriminating their contribution from relatively isolated nanoparticles. (C) 2005 American Institute of Physics.
引用
收藏
页数:6
相关论文
共 43 条
  • [11] Dense medium plasma synthesis of carbon/iron-based magnetic nanoparticle system
    Denes, FS
    Manolache, S
    Ma, YC
    Shamamian, V
    Ravel, B
    Prokes, S
    [J]. JOURNAL OF APPLIED PHYSICS, 2003, 94 (05) : 3498 - 3508
  • [12] Dormann JL, 1997, ADV CHEM PHYS, V98, P283, DOI 10.1002/9780470141571.ch4
  • [13] Universality of ac conduction in disordered solids
    Dyre, JC
    Schroder, TB
    [J]. REVIEWS OF MODERN PHYSICS, 2000, 72 (03) : 873 - 892
  • [14] Spin-polarized transport across sharp antiferromagnetic boundaries
    Eerenstein, W
    Palstra, TTM
    Saxena, SS
    Hibma, T
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (24) : 4 - 247204
  • [15] Magnetic resonance of nanoparticles in a ferrofluid: evidence of thermofluctuational effects
    Gazeau, F
    Shilov, V
    Bacri, JC
    Dubois, E
    Gendron, F
    Perzynski, R
    Raikher, YL
    Stepanov, VI
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1999, 202 (2-3) : 535 - 546
  • [16] Magnetic resonance of ferrite nanoparticles: evidence of surface effects
    Gazeau, F
    Bacri, JC
    Gendron, F
    Perzynski, R
    Raikher, YL
    Stepanov, VI
    Dubois, E
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1998, 186 (1-2) : 175 - 187
  • [17] Cementite-iron nanocomposite
    Goodwin, TJ
    Yoo, SH
    Matteazzi, P
    Groza, JR
    [J]. NANOSTRUCTURED MATERIALS, 1997, 8 (05): : 559 - 566
  • [18] Static and dynamic magnetic properties of spherical magnetite nanoparticles
    Goya, GF
    Berquó, TS
    Fonseca, FC
    Morales, MP
    [J]. JOURNAL OF APPLIED PHYSICS, 2003, 94 (05) : 3520 - 3528
  • [19] Curie temperature enhancement in Fe3C nanoparticles made by laser pyrolysis
    Grimes, CA
    Horn, JL
    Bush, GG
    Allen, JL
    Eklund, PC
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 1997, 33 (05) : 3736 - 3738
  • [20] Laser pyrolysis fabrication of ferromagnetic γ′-Fe4N and FeC nanoparticles
    Grimes, CA
    Qian, D
    Dickey, EC
    Allen, JL
    Eklund, PC
    [J]. JOURNAL OF APPLIED PHYSICS, 2000, 87 (09) : 5642 - 5644