EXISTENCE OF RESOLVENT FOR VOLTERRA INTEGRAL EQUATIONS ON TIME SCALES

被引:35
作者
Adivar, Murat [1 ]
Raffoul, Youssef N. [2 ]
机构
[1] Izmir Univ Econ, Dept Math, TR-35330 Izmir, Turkey
[2] Univ Dayton, Dept Math, Dayton, OH 45469 USA
关键词
existence; resolvent; shift operator; time scales; Volterra integral equation;
D O I
10.1017/S0004972709001166
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the concept of 'shift operators' in order to establish sufficient conditions for the existence of the resolvent for the Volterra integral equation x(t) = f(t) + integral(t)(t0)a(t, s)x(s)Delta s, t(0) is an element of T-kappa, on time scales. The paper will serve as the foundation for future research on the qualitative analysis of solutions of Volterra integral equations on time scales, using the notion of the resolvent.
引用
收藏
页码:139 / 155
页数:17
相关论文
共 11 条
[1]   Oscillation of symplectic dynamic systems [J].
Bohner, M ;
Dosly, O .
ANZIAM JOURNAL, 2004, 46 :17-32
[2]  
Bohner M, 2005, DYNAM SYST APPL, V14, P579
[3]  
BOHNER M, 2001, INTRO APPL
[4]  
Bohner M., 2003, Advances in Dynamic Equations on Time Scales, DOI DOI 10.1007/978-0-8176-8230-9
[5]   Double integral calculus of variations on time scales [J].
Bohner, Martin ;
Guseinov, Gusein Sh. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 54 (01) :45-57
[6]  
Hilger S., 1990, Result math, V18, P18, DOI [DOI 10.1007/BF03323153, 10.1007/BF03323153]
[7]  
KARPUZ B, 2009, ELECT J QUAL THEORY, V34
[8]  
Kulik P., 2008, Int. J. Differ. Equ, V3, P103
[9]  
Miller R. K, 1971, NONLINEAR VOLTERRA I
[10]   'Basic qualitative and quantitative results for solutions to nonlinear, dynamic equations on time scales with an application to economic modelling [J].
Tisdell, Christopher C. ;
Zaidi, Atiya .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (11) :3504-3524