An Eikonal Approach for the Initiation of Reentrant Cardiac Propagation in Reaction-Diffusion Models

被引:31
作者
Jacquemet, Vincent [1 ,2 ]
机构
[1] Univ Montreal, Hop Sacre Coeur, Montreal, PQ H4J 1C5, Canada
[2] Univ Montreal, Inst Genie Biomed, Dept Physiol, Montreal, PQ H4J 1C5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Cardiac electrical propagation; computational electrophysiology; eikonal equation; reaction-diffusion system; reentry; WAVE-FRONT PROPAGATION; ATRIAL-FIBRILLATION; BIOPHYSICAL MODEL; EQUATIONS; SIMULATIONS; TISSUE; MESHES;
D O I
10.1109/TBME.2010.2051156
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Microscale electrical propagation in the heart can be modeled by a reaction-diffusion system, describing cell and tissue electrophysiology. Macroscale features of wavefront propagation can be reproduced by an eikonal model, a reduced formulation involving only wavefront shape. In this paper, these two approaches are combined to incorporate global information about reentrant pathways into a reaction-diffusion model. The eikonal-diffusion formulation is generalized to handle reentrant activation patterns and wavefront collisions. Boundary conditions are used to specify pathways of reentry. Finite-element-based numerical methods are presented to solve this nonlinear equation on a coarse triangular mesh. The macroscale eikonal model serves to construct an initial condition for the microscale reaction-diffusion model. Electrical propagation simulated from this initial condition is then compared to the isochrones predicted by the eikonal model. Results in 2-D and thin 3-D test-case geometries demonstrate the ability of this technique to initiate anatomical and functional reentries along prescribed pathways, thus facilitating the development of dedicated models aimed at better understanding clinical case reports.
引用
收藏
页码:2090 / 2098
页数:9
相关论文
共 32 条
[1]   Traveltime computation with the linearized eikonal equation for anisotropic media [J].
Alkhalifah, T .
GEOPHYSICAL PROSPECTING, 2002, 50 (04) :373-382
[2]   Numerical schemes for the Hamilton-Jacobi and level set equations on triangulated domains [J].
Barth, TJ ;
Sethian, JA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 145 (01) :1-40
[3]  
BURSAC N, 2004, P NATL ACAD SCI USA, V101
[4]   Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model [J].
Courtemanche, M ;
Ramirez, RJ ;
Nattel, S .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 1998, 275 (01) :H301-H321
[5]  
Franzone P.C., 1990, J MATH BIOL, V28, P121, DOI [doi:10.1007/BF00163143, DOI 10.1007/BF00163143]
[6]   Mechanism underlying initiation of paroxysmal atrial flutter/atrial fibrillation by ectopic foci - A simulation study [J].
Gong, Yunfan ;
Xie, Fagen ;
Stein, Kenneth M. ;
Garfinkel, Alan ;
Culianu, Calin A. ;
Lerman, Bruce B. ;
Christini, David J. .
CIRCULATION, 2007, 115 (16) :2094-2102
[7]   Finite volume stiffness matrix for solving anisotropic cardiac propagation in 2-D and 3-D unstructured meshes [J].
Jacquemet, V ;
Henriquez, CS .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2005, 52 (08) :1490-1492
[8]   Analysis of electrocardiograms during atrial fibrillation - A biophysical model approach [J].
Jacquemet, Vincent ;
van Oosterom, Adriaan ;
Vesin, Jean-Marc ;
Kappenberger, Lukas .
IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, 2006, 25 (06) :79-88
[9]  
Jacquemet Vincent, 2008, IEEE Rev Biomed Eng, V1, P94, DOI 10.1109/RBME.2008.2008242
[10]  
Josephs H., 2002, DYNAMICS MECH SYSTEM