Bayesian Spatial Kernel Smoothing for Scalable Dense Semantic Mapping

被引:53
作者
Gan, Lu [1 ]
Zhang, Ray [1 ]
Grizzle, Jessy W. [1 ]
Eustice, Ryan M. [1 ]
Ghaffari, Maani [1 ]
机构
[1] Univ Michigan, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Mapping; semantic scene understanding; range sensing; RGB-D perception; MOBILE ROBOTS; MAPS; EXPLORATION; FRAMEWORK;
D O I
10.1109/LRA.2020.2965390
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
This article develops a Bayesian continuous 3D semantic occupancy map from noisy point clouds by generalizing the Bayesian kernel inference model for building occupancy maps, a binary problem, to semantic maps, a multi-class problem. The proposed method provides a unified probabilistic model for both occupancy and semantic probabilities and nicely reverts to the original occupancy mapping framework when only one occupied class exists in obtained measurements. The Bayesian spatial kernel inference relaxes the independent grid assumption and brings smoothness and continuity to the map inference, enabling to exploit local correlations present in the environment and increasing the performance. The accompanying software uses multi-threading and vectorization, and runs at about 2 Hz on a laptop CPU. Evaluations using multiple sequences of stereo camera and LiDAR datasets show that the proposed method consistently outperforms current baselines. We also present a qualitative evaluation using data collected with a bipedal robot platform on the University of Michigan - North Campus.
引用
收藏
页码:790 / 797
页数:8
相关论文
共 50 条
[1]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281
[2]  
[Anonymous], THESIS
[3]  
[Anonymous], P ROB SCI SYST C JUN
[4]  
[Anonymous], 2018, Proceed. SemDial
[5]  
Armeni I., 2017, arXiv preprint arXiv:1702.01105
[6]   SemanticKITTI: A Dataset for Semantic Scene Understanding of LiDAR Sequences [J].
Behley, Jens ;
Garbade, Martin ;
Milioto, Andres ;
Quenzel, Jan ;
Behnke, Sven ;
Stachniss, Cyrill ;
Gall, Juergen .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :9296-9306
[7]   University of Michigan North Campus long-term vision and lidar dataset [J].
Carlevaris-Bianco, Nicholas ;
Ushani, Arash K. ;
Eustice, Ryan M. .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2016, 35 (09) :1023-1035
[8]  
Chen X., 2019, PROC IEEERSJ INT C I, P1
[9]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[10]  
Doherty Kevin, 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA), P3118, DOI 10.1109/ICRA.2017.7989356