Fusion of meteorological and air quality data extracted from the web for personalized environmental information services

被引:40
作者
Johansson, Lasse [1 ]
Epitropou, Victor [2 ]
Karatzas, Kostas [2 ]
Karppinen, Ari [1 ]
Wanner, Leo [3 ,4 ]
Vrochidis, Stefanos [5 ]
Bassoukos, Anastasios [2 ]
Kukkonen, Jaakko [1 ]
Kompatsiaris, Ioannis [5 ]
机构
[1] Finnish Meteorol Inst, FI-00101 Helsinki, Finland
[2] Aristotle Univ Thessaloniki, Dept Mech Engn, Informat Syst & Applicat Grp, Thessaloniki 54124, Greece
[3] Pompeu Fabra Univ, Catalan Inst Res & Adv Studies, Barcelona, Spain
[4] Pompeu Fabra Univ, Dept Informat & Commun Technol, Barcelona, Spain
[5] Inst Informat Technol, Ctr Res & Technol Hellas, Thessaloniki, Greece
关键词
Environmental information fusion; Image-reverse engineering; Service orchestration; PESCaDO; POLLUTION;
D O I
10.1016/j.envsoft.2014.11.021
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
There is a large amount of meteorological and air quality data available online. Often, different sources provide deviating and even contradicting data for the same geographical area and time. This implies that users need to evaluate the relative reliability of the information and then trust one of the sources. We present a novel data fusion method that merges the data from different sources for a given area and time, ensuring the best data quality. The method is a unique combination of land-use regression techniques, statistical air quality modelling and a well-known data fusion algorithm. We show experiments where a fused temperature forecast outperforms individual temperature forecasts from several providers. Also, we demonstrate that the local hourly NO2 concentration can be estimated accurately with our fusion method while a more conventional extrapolation method falls short. The method forms part of the prototype web-based service PESCaDO, designed to cater personalized environmental information to users. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:143 / 155
页数:13
相关论文
共 35 条
  • [1] A European open access chemical weather forecasting portal
    Balk, Taru
    Kukkonen, Jaakko
    Karatzas, Kostas
    Bassoukos, Tassos
    Epitropou, Victor
    [J]. ATMOSPHERIC ENVIRONMENT, 2011, 45 (38) : 6917 - 6922
  • [2] Bassoukos A., 2005, P INF ENV PROT NETW, P151
  • [3] Boser B. E., 1992, Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, P144, DOI 10.1145/130385.130401
  • [4] Cressie N, 1993, STAT SPATIAL DATA, DOI [10.1002/9781119115151, DOI 10.1002/9781119115151]
  • [5] Epitropou Victor, 2012, International Journal of Artificial Intelligence, V9, P152
  • [6] Epitropou V., 2010, P GI FOR S EXH APPL, P58
  • [7] Epitropou V, 2011, ENVIRON SCI ENG, P781, DOI 10.1007/978-3-642-19536-5_61
  • [8] Ontology-based web crawler
    Ganesh, S
    Jayaraj, M
    Kalyan, V
    Murthy, S
    Aghila, G
    [J]. ITCC 2004: INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: CODING AND COMPUTING, VOL 2, PROCEEDINGS, 2004, : 337 - 341
  • [9] A review of land-use regression models to assess spatial variation of outdoor air pollution
    Hoek, Gerard
    Beelen, Rob
    de Hoogh, Kees
    Vienneau, Danielle
    Gulliver, John
    Fischer, Paul
    Briggs, David
    [J]. ATMOSPHERIC ENVIRONMENT, 2008, 42 (33) : 7561 - 7578
  • [10] Spatial interpolation of air pollution measurements using CORINE land cover data
    Janssen, Stijn
    Dumont, Gerwin
    Fierens, Frans
    Mensink, Clemens
    [J]. ATMOSPHERIC ENVIRONMENT, 2008, 42 (20) : 4884 - 4903