Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: Facile synthesis and electromagnetic properties

被引:355
|
作者
Wu, Hongjing [1 ]
Wu, Guanglei [2 ]
Wang, Liuding [1 ]
机构
[1] Northwestern Polytech Univ, Dept Appl Phys, Xian 710072, Peoples R China
[2] Xi An Jiao Tong Univ, CNRE, Sch Elect Engn, State Key Lab Elect Insulat & Power Equipment, Xian 710049, Peoples R China
关键词
Iron oxides; Porous nanospheres; TEM; EM wave absorption properties; MICROWAVE-ABSORPTION PROPERTIES; ASSISTED HYDROTHERMAL SYNTHESIS; HOLLOW SPHERES; MAGNETIC-PROPERTIES; HEMATITE PARTICLES; GROWTH-MECHANISM; ETHANOL SENSORS; WAVE ABSORPTION; CARBON NANOTUBE; NANORODS;
D O I
10.1016/j.powtec.2014.09.045
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
We reported a facile approach to prepare peculiar porous alpha-Fe2O3, gamma-Fe2O3 and Fe3O4 nanospheres by combining a facile hydrothermal route with a calcination process in Ar or H-2 atmosphere. The synthesized monodisperse potous alpha-Fe2O3 nanospheres with uniform average diameters of similar to 60 nm in fact contained randomly distributed pores. A close view further revealed that there are two types of pores, one is large mesopores (ca. 15-20 nm) in the center, and the other is small mesopores (ca. <10 nm) in the outside. After calcining in Ar or H-2, the obtained alpha-Fe2O3, gamma-Fe2O3 and Fe3O4 nanospheres preserved the similar morphology and particle size as the uncalcined alpha-Fe2O3 nanospheres, indicating the as-prepared alpha-Fe2O3 nanospheres are stable under Ar and H-2-annealing heat treatment Comparing with all the paraffin composites, it was found that the porous alpha-Fe2O3 nanosphere/paraffin composites exhibit a higher permittivity level. A minimum reflection loss (RL) of 25 dB was observed at similar to 13 GHz for the porous alpha-Fe2O3 nanosphere/paraffin composites with a thickness of 3.5 mm, and the effective absorption frequency (RL < 10 dB) ranged from 9.9 to 15.1 GHz. The composites exhibited better absorption properties than the magnetic porous gamma-Fe2O3 and Fe3O4 nanosphere/paraffin composites. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:443 / 451
页数:9
相关论文
共 50 条
  • [41] A solvothermal transformation of α-Fe2O3 nanocrystals to Fe3O4 polyhedrons
    Chen, Liqiao
    Xiong, Qingfeng
    Li, Wenlin
    Li, Junpeng
    Yu, Xuan
    CRYSTENGCOMM, 2015, 17 (45): : 8602 - 8606
  • [42] Equilibrium relationships of Fe3O4, Fe2O3, and oxygen.
    Greig, JW
    Posnjak, E
    Merwin, HE
    Sosman, RB
    AMERICAN JOURNAL OF SCIENCE, 1935, 30 (177) : 239 - 316
  • [43] The Fe3O4 origin of the "Biphase" reconstruction on α-Fe2O3(0001)
    Lanier, Courtney H.
    Chiaramonti, Ann N.
    Marks, Laurence D.
    Poeppelmeier, Kenneth R.
    SURFACE SCIENCE, 2009, 603 (16) : 2574 - 2579
  • [44] REDUCTION KINETICS OF FE2O3 IN FE3O4 AT LOW TEMPERATURES
    DOBOVISE.B
    KOROUSIC, B
    MINING AND METALLURGY QUARTERLY, 1968, (02): : 15 - &
  • [45] Growth defects and epitaxy in Fe3O4 and γ-Fe2O3 nanocrystals
    Recnik, Aleksander
    Nyiro-Kosa, Ilona
    Dodony, Istvan
    Posfai, Mihaly
    CRYSTENGCOMM, 2013, 15 (37): : 7539 - 7547
  • [46] Structural behavior of laser-irradiated γ-Fe2O3 nanocrystals dispersed in porous silica matrix : γ-Fe2O3 to α-Fe2O3 phase transition and formation of ε-Fe2O3
    El Mendili, Yassine
    Bardeau, Jean-Francois
    Randrianantoandro, Nirina
    Greneche, Jean-Marc
    Grasset, Fabien
    SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2016, 17 (01) : 597 - 609
  • [47] Structural evolution from mesoporous α-Fe2O3 to Fe3O4@C and γ-Fe2O3 nanospheres and their lithium storage performances
    Yuan, Shuming
    Zhou, Zhen
    Li, Guang
    CRYSTENGCOMM, 2011, 13 (14): : 4709 - 4713
  • [48] Synthesis and Physical Characterization of γ-Fe2O3 and (α plus γ)-Fe2O3 Nanoparticles
    Bhavani, P.
    Reddy, N. Ramamanohar
    Reddy, I. Venkata Subba
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2017, 70 (02) : 150 - 154
  • [49] Fabrication of Magnetic α-Fe2O3/Fe3O4 Composite Particles by Nanosecond Laser Irradiation of α-Fe2O3 Powder in Water
    Kihara, Ryo
    Shigetaka, Akari
    Isshiki, Tsubasa
    Wada, Hiroyuki
    Yamamuro, Saeki
    Asahi, Tsuyoshi
    CHEMISTRY LETTERS, 2020, 49 (04) : 413 - 415
  • [50] Thermal oxide synthesis and characterization of Fe3O4 nanorods and Fe2O3 nanowires
    Hua Jiao
    HeQing Yang
    Science in China Series B: Chemistry, 2009, 52 : 599 - 604