Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: Facile synthesis and electromagnetic properties

被引:358
作者
Wu, Hongjing [1 ]
Wu, Guanglei [2 ]
Wang, Liuding [1 ]
机构
[1] Northwestern Polytech Univ, Dept Appl Phys, Xian 710072, Peoples R China
[2] Xi An Jiao Tong Univ, CNRE, Sch Elect Engn, State Key Lab Elect Insulat & Power Equipment, Xian 710049, Peoples R China
关键词
Iron oxides; Porous nanospheres; TEM; EM wave absorption properties; MICROWAVE-ABSORPTION PROPERTIES; ASSISTED HYDROTHERMAL SYNTHESIS; HOLLOW SPHERES; MAGNETIC-PROPERTIES; HEMATITE PARTICLES; GROWTH-MECHANISM; ETHANOL SENSORS; WAVE ABSORPTION; CARBON NANOTUBE; NANORODS;
D O I
10.1016/j.powtec.2014.09.045
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
We reported a facile approach to prepare peculiar porous alpha-Fe2O3, gamma-Fe2O3 and Fe3O4 nanospheres by combining a facile hydrothermal route with a calcination process in Ar or H-2 atmosphere. The synthesized monodisperse potous alpha-Fe2O3 nanospheres with uniform average diameters of similar to 60 nm in fact contained randomly distributed pores. A close view further revealed that there are two types of pores, one is large mesopores (ca. 15-20 nm) in the center, and the other is small mesopores (ca. <10 nm) in the outside. After calcining in Ar or H-2, the obtained alpha-Fe2O3, gamma-Fe2O3 and Fe3O4 nanospheres preserved the similar morphology and particle size as the uncalcined alpha-Fe2O3 nanospheres, indicating the as-prepared alpha-Fe2O3 nanospheres are stable under Ar and H-2-annealing heat treatment Comparing with all the paraffin composites, it was found that the porous alpha-Fe2O3 nanosphere/paraffin composites exhibit a higher permittivity level. A minimum reflection loss (RL) of 25 dB was observed at similar to 13 GHz for the porous alpha-Fe2O3 nanosphere/paraffin composites with a thickness of 3.5 mm, and the effective absorption frequency (RL < 10 dB) ranged from 9.9 to 15.1 GHz. The composites exhibited better absorption properties than the magnetic porous gamma-Fe2O3 and Fe3O4 nanosphere/paraffin composites. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:443 / 451
页数:9
相关论文
共 46 条
[1]   Highly monodisperse zirconia-coated silica spheres and zirconia/silica hollow spheres with remarkable textural properties [J].
Arnal, Pablo M. ;
Weidenthaler, Claudia ;
Schueth, Ferdi .
CHEMISTRY OF MATERIALS, 2006, 18 (11) :2733-2739
[2]   Ferroferric Oxide/Multiwalled Carbon Nanotube vs Polyaniline/Ferroferric Oxide/Multiwalled Carbon Nanotube Multiheterostructures for Highly Effective Microwave Absorption [J].
Cao, Mao-Sheng ;
Yang, Jian ;
Song, Wei-Li ;
Zhang, De-Qing ;
Wen, Bo ;
Jin, Hai-Bo ;
Hou, Zhi-Ling ;
Yuan, Jie .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (12) :6949-6956
[3]   Matching design and mismatching analysis towards radar absorbing coatings based on conducting plate [J].
Cao, MS ;
Qin, RR ;
Qiu, CJ ;
Zhu, J .
MATERIALS & DESIGN, 2003, 24 (05) :391-396
[4]   Hierarchically nanostructured (α-Fe2O3 hollow spheres:: Preparation, growth mechanism, photocatalytic property, and application in water treatment [J].
Cao, Shao-Wen ;
Zhu, Ying-Jie .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (16) :6253-6257
[5]   Glycine-assisted hydrothermal synthesis of peculiar porous α-Fe2O3 nanospheres with excellent gas-sensing properties [J].
Chen, Hongmin ;
Zhao, Yingqiang ;
Yang, Mingqing ;
He, Junhui ;
Chu, Paul K. ;
Zhang, Jun ;
Wu, Shihua .
ANALYTICA CHIMICA ACTA, 2010, 659 (1-2) :266-273
[6]   Porous Fe3O4/Carbon Core/Shell Nanorods: Synthesis and Electromagnetic Properties [J].
Chen, Yu-Jin ;
Xiao, Gang ;
Wang, Tie-Shi ;
Ouyang, Qiu-Yun ;
Qi, Li-Hong ;
Ma, Yang ;
Gao, Peng ;
Zhu, Chun-Ling ;
Cao, Mao-Sheng ;
Jin, Hai-Bo .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (28) :13603-13608
[7]  
deFaria DLA, 1997, J RAMAN SPECTROSC, V28, P873, DOI 10.1002/(SICI)1097-4555(199711)28:11<873::AID-JRS177>3.0.CO
[8]  
2-B
[9]   VIBRATIONAL-MODES OF CARBON NANOTUBES - SPECTROSCOPY AND THEORY [J].
EKLUND, PC ;
HOLDEN, JM ;
JISHI, RA .
CARBON, 1995, 33 (07) :959-972
[10]   In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy [J].
Fujii, T ;
de Groot, FMF ;
Sawatzky, GA ;
Voogt, FC ;
Hibma, T ;
Okada, K .
PHYSICAL REVIEW B, 1999, 59 (04) :3195-3202