On radial Fourier multipliers and almost everywhere convergence

被引:16
作者
Lee, Sanghyuk [1 ]
Seeger, Andreas [2 ]
机构
[1] Seoul Natl Univ, Sch Math Sci, Seoul 151742, South Korea
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2015年 / 91卷
基金
美国国家科学基金会;
关键词
LIPSCHITZ-SPACES;
D O I
10.1112/jlms/jdu066
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study almost everywhere (a.e.) convergence on L-p and Lorentz spaces L-p,L-q, for variants of Riesz means at the critical index lambda(p) = d(1/2 - 1/p) - 1/2 for p > 2d/(d - 1). For the classical Riesz means S-t(lambda(p)), we show a.e. convergence for f is an element of L-p,L-1. We derive more general results for radial and quasi-radial Fourier multipliers and associated maximal functions, acting on L-2 spaces with power weights and their interpolation spaces. We also include a characterization of boundedness of such multiplier transformations on weighted L-2 spaces, and a sharp endpoint bound for Stein's square function associated with the Riesz means.
引用
收藏
页码:105 / 126
页数:22
相关论文
共 22 条