A Hybrid machine-learning method for oil-immersed power transformer fault diagnosis

被引:16
|
作者
Yang, Xiaohui [1 ]
Chen, Wenkai [1 ]
Li, Anyi [1 ]
Yang, Chunsheng [2 ]
机构
[1] Nanchang Univ, Coll Informat Engn, Nanchang, Jiangxi, Peoples R China
[2] Natl Res Council Canada, 1200 Montreal Rd, Ottawa, ON K1A 0R6, Canada
基金
美国国家科学基金会;
关键词
multi-verse optimizer algorithm; probabilistic neural network; machine learning; oil-immersed power transformer; fault diagnosis; DISSOLVED-GAS ANALYSIS; MULTI-VERSE OPTIMIZER; FEATURE-SELECTION; NEURAL-NETWORKS; SYSTEM;
D O I
10.1002/tee.23081
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a hybrid machine-learning method based on oil-immersed power transformer fault diagnosis Probability Neural Network (PNN) optimized via a Multi-Verse Optimizer (MVO) algorithm. PNN is a radial basis function prefeedback neural network based on Bayesian decision theory. It has strong fault tolerance and has significant advantages in pattern classification. However, the performance of PNN is greatly affected by the hidden-layer unit-smoothing factor, and the classification result is affected. MVO is a metaheuristic algorithm with strong global convergence. Therefore, the smoothing factor of MVO-optimized PNN (MVO-PNN) can effectively improve the fault diagnosis ability. Recent studies have demonstrated the MVO algorithm. We utilize an experiment about the oil data in the power transformer in Jiangxi Province, China. The results show that MVO-PNN can significantly improve the accuracy of power transformer fault classification and is more efficient than the Cuckoo search algorithm, Bat algorithm, Genetic Algorithm optimization, and other algorithms capabilities in some cases. (c) 2020 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.
引用
收藏
页码:501 / 507
页数:7
相关论文
共 50 条
  • [31] Fault Diagnosis of Oil-immersed Transformer Based on Improved Seagull Optimization Algorithm to Optimize Wavelet Neural Network
    Wang, Jingou
    Shan, Yafeng
    Fu, Hua
    2022 9TH INTERNATIONAL FORUM ON ELECTRICAL ENGINEERING AND AUTOMATION, IFEEA, 2022, : 1156 - 1162
  • [32] Grey clustering analysis for incipient fault diagnosis in oil-immersed transformers
    Lin, Chia-Hung
    Wu, Chien-Hsien
    Huang, Ping-Zan
    EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (02) : 1371 - 1379
  • [33] A New Support Vector Machine Model Based on Improved Imperialist Competitive Algorithm for Fault Diagnosis of Oil-immersed Transformers
    Zhang, Yiyi
    Wei, Hua
    Liao, Ruijin
    Wang, Youyuan
    Yang, Lijun
    Yan, Chunyu
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2017, 12 (02) : 830 - 839
  • [34] Influence of Measurement Parameters on Frequency Response Analysis Diagnosis of Oil-Immersed Transformer
    Sano, Takahiro
    Miyagi, Katsunori
    ELECTRICAL ENGINEERING IN JAPAN, 2014, 186 (01) : 18 - 25
  • [35] Novel Power Transformer Fault Diagnosis Using Optimized Machine Learning Methods
    Taha, Ibrahim B. M.
    Mansour, Diaa-Eldin A.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2021, 28 (03) : 739 - 752
  • [36] Fault Diagnosis for Oil Immersed Transformer Using Certainty Factor
    Kaur, Kulraj
    Bhalla, Deepika
    Singh, Jashandeep
    IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 2024, 31 (01) : 485 - 494
  • [37] Explainable Fault Diagnosis of Oil-Immersed Transformers: A Glass-Box Model
    Liao, Wenlong
    Zhang, Yi
    Cao, Di
    Ishizaki, Takayuki
    Yang, Zhe
    Yang, Dechang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 4
  • [38] A fault diagnostic method for oil-immersed transformer based on multiple probabilistic output algorithms and improved DS evidence theory
    Hua, Yue
    Sun, Yuanyuan
    Xu, Gongde
    Sun, Shengya
    Wang, Erdong
    Pang, Yanqing
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2022, 137
  • [39] Application of data mining technique based on grey relational analysis in oil-immersed power apparatus fault diagnosis
    Peng Zheng-Hong
    Song Bin
    2006 INTERNATIONAL CONFERENCE ON POWER SYSTEMS TECHNOLOGY: POWERCON, VOLS 1- 6, 2006, : 329 - +
  • [40] A Power Transformer Fault Diagnosis Method-Based Hybrid Improved Seagull Optimization Algorithm and Support Vector Machine
    Wu, Yuhan
    Sun, Xianbo
    Zhang, Yi
    Zhong, Xianjing
    Cheng, Lei
    IEEE ACCESS, 2022, 10 : 17268 - 17286