Multiplicity of solutions to nearly critical elliptic equation in the bounded domain of R3

被引:1
作者
Chen, Wenjing [1 ]
Guerra, Ignacio [2 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[2] Univ Santiago Chile, Dept Matemat & Ciencia Computac, Santiago 9170125, Chile
关键词
Multiplicity; Bubble solutions; Mountain pass solution; CRITICAL SOBOLEV EXPONENT; NEUMANN PROBLEM; GROUND-STATES; GROWTH;
D O I
10.1016/j.jmaa.2014.11.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the following Dirichlet boundary value problem {-Delta u = u(5-epsilon) + lambda u(q), u > 0 in Omega; u = 0 on partial derivative Omega, (0.1) where Omega is a smooth bounded domain in R-3, 1 < q < 3, the parameters lambda > 0 and epsilon > 0. By Lyapunov-Schmidt reduction method and the Mountain Pass Theorem, we prove that in suitable ranges for the parameters lambda and epsilon, problem (0.1) has at least two solutions. Additionally if 2 <= q < 3, we prove the existence of at least three solutions. Consequently, we prove a non-uniqueness result for a suberitical problem with an increasing nonlinearity. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:179 / 200
页数:22
相关论文
共 20 条
[1]   EMDEN-FOWLER EQUATIONS INVOLVING CRITICAL EXPONENTS [J].
ATKINSON, FV ;
PELETIER, LA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (08) :755-776
[2]   ON A NONLINEAR ELLIPTIC EQUATION INVOLVING THE CRITICAL SOBOLEV EXPONENT - THE EFFECT OF THE TOPOLOGY OF THE DOMAIN [J].
BAHRI, A ;
CORON, JM .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (03) :253-294
[3]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[4]   ASYMPTOTIC SYMMETRY AND LOCAL BEHAVIOR OF SEMILINEAR ELLIPTIC-EQUATIONS WITH CRITICAL SOBOLEV GROWTH [J].
CAFFARELLI, LA ;
GIDAS, B ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (03) :271-297
[5]   Bubble-Tower phenomena in a semilinear elliptic equation with mixed Sobolev growth [J].
Campos, Juan F. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (05) :1382-1397
[6]   Non-uniqueness of positive ground states of non-linear Schrodinger equations [J].
Davila, Juan ;
del Pino, Manuel ;
Guerra, Ignacio .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 106 :318-344
[7]   Super-critical boundary bubbling in a semilinear Neumann problem [J].
del Pino, M ;
Musso, M ;
Pistoia, A .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2005, 22 (01) :45-82
[8]   The Brezis-Nirenberg problem near criticality in dimension 3 [J].
del Pino, M ;
Dolbeault, J ;
Musso, M .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2004, 83 (12) :1405-1456
[9]   Two-bubble solutions in the super-critical Bahri-Coron's problem (vol 16, pg 113, 2003) [J].
del Pino, M ;
Felmer, P ;
Musso, M .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2004, 20 (02) :231-233
[10]   Ground states of a prescribed mean curvature equation [J].
del Pino, Manuel ;
Guerra, Ignacio .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 241 (01) :112-129