Waveguide Enhanced Raman Spectroscopy for Biosensing: A Review

被引:27
作者
Ettabib, Mohamed A. [2 ]
Marti, Almudena [1 ]
Liu, Zhen [2 ]
Bowden, Bethany M. [1 ]
Zervas, Michalis N. [2 ]
Bartlett, Philip N. [1 ]
Wilkinson, James S. [2 ]
机构
[1] Univ Southampton, Sch Chem, Southampton SO17 1BJ, Hants, England
[2] Univ Southampton, Zepler Inst Photon & Nanoelect, Southampton SO17 1BJ, Hants, England
基金
英国工程与自然科学研究理事会;
关键词
Raman sensor; Raman spectroscopy; biosensing; integrated photonics; photonic sensors; waveguide; surface functionalization; WERS; SERS; THIN POLYMER-FILMS; SURFACE SELECTION-RULES; FLUORESCENCE SPECTROSCOPY; EVANESCENT EXCITATION; SCATTERING; DNA; OXIDE; CHIP; ABSORPTION; SENSORS;
D O I
10.1021/acssensors.1c00366
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Waveguide enhanced Raman spectroscopy (WERS) utilizes simple, robust, high-index contrast dielectric waveguides to generate a strong evanescent field, through which laser light interacts with analytes residing on the surface of the waveguide. It offers a powerful tool for the direct identification and reproducible quantification of biochemical species and an alternative to surface enhanced Raman spectroscopy (SERS) without reliance on fragile noble metal nanostructures. The advent of low-cost laser diodes, compact spectrometers, and recent progress in material engineering, nano-fabrication techniques, and software modeling tools have made realizing portable and cheap WERS Raman systems with high sensitivity a realistic possibility. This review highlights the latest progress in WERS technology and summarizes recent demonstrations and applications. Following an introduction to the fundamentals of WERS, the theoretical framework that underpins the WERS principles is presented. The main WERS design considerations are then discussed, and a review of the available approaches for the modification of waveguide surfaces for the attachment of different biorecognition elements is provided. The review concludes by discussing and contrasting the performance of recent WERS implementations, thereby providing a future roadmap of WERS technology where the key opportunities and challenges are highlighted.
引用
收藏
页码:2025 / 2045
页数:21
相关论文
共 161 条
[51]   Waveguide excitation fluorescence microscopy:: A new tool for sensing and imaging the biointerface [J].
Grandin, HM ;
Städler, B ;
Textor, M ;
Vörös, J .
BIOSENSORS & BIOELECTRONICS, 2006, 21 (08) :1476-1482
[52]   The Attachment Affinity of Hemoglobin toward Silver-Containing Bioactive Glass Functionalized with Glutaraldehyde [J].
Gruian, C. ;
Vulpoi, A. ;
Vanea, E. ;
Oprea, B. ;
Steinhoff, H. -J. ;
Simon, S. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2013, 117 (51) :16558-16564
[53]   Formation of Highly Stable Self-Assembled Alkyl Phosphonic Acid Monolayers for the Functionalization of Titanium Surfaces and Protein Patterning [J].
Han, Xuemingyue ;
Sun, Xiangyu ;
He, Tao ;
Sun, Shuqing .
LANGMUIR, 2015, 31 (01) :140-148
[54]   A Hybrid Integrated Light Source on a Silicon Platform Using a Trident Spot-Size Converter [J].
Hatori, Nobuaki ;
Shimizu, Takanori ;
Okano, Makoto ;
Ishizaka, Masashige ;
Yamamoto, Tsuyoshi ;
Urino, Yutaka ;
Mori, Masahiko ;
Nakamura, Takahiro ;
Arakawa, Yasuhiko .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2014, 32 (07) :1329-1336
[55]  
Hermanson GT, 2013, BIOCONJUGATE TECHNIQUES, 3RD EDITION, P229, DOI 10.1016/B978-0-12-382239-0.00003-0
[56]  
Hermanson GT, 2013, BIOCONJUGATE TECHNIQUES, 3RD EDITION, P1
[57]   Trace gas Raman spectroscopy using functionalized waveguides [J].
Holmstrom, Scott A. ;
Stievater, Todd H. ;
Kozak, Dmitry A. ;
Pruessner, Marcel W. ;
Tyndall, Nathan ;
Rabinovich, William S. ;
McGill, R. Andrew ;
Khurgin, Jacob B. .
OPTICA, 2016, 3 (08) :891-896
[58]   Integrated microspectrometer for fluorescence based analysis in a microfluidic format [J].
Hu, Zhixiong ;
Glidle, Andrew ;
Ironside, Charles N. ;
Sorel, Marc ;
Strain, Michael J. ;
Cooper, Jon ;
Yin, Huabing .
LAB ON A CHIP, 2012, 12 (16) :2850-2857
[59]   Towards heterogeneous integration of optical isolators and circulators with lasers on silicon [J].
Huang, Duanni ;
Pintus, Paolo ;
Bowers, John E. .
OPTICAL MATERIALS EXPRESS, 2018, 8 (09) :2471-2483
[60]   Biotin-derivatized poly(L-lysine)-g-poly(ethylene glycol):: A novel polymeric interface for bioaffinity sensing [J].
Huang, NP ;
Vörös, J ;
De Paul, SM ;
Textor, M ;
Spencer, ND .
LANGMUIR, 2002, 18 (01) :220-230