Integrated Tapping Mode Kelvin Probe Force Microscopy with Photoinduced Force Microscopy for Correlative Chemical and Surface Potential Mapping

被引:21
作者
Jakob, Devon S. [1 ]
Li, Nengxu [2 ]
Zhou, Huanping [2 ]
Xu, Xiaoji G. [1 ]
机构
[1] Lehigh Univ, Dept Chem, Bethlehem, PA 18015 USA
[2] Peking Univ, Dept Mat Sci & Engn, Beijing 100871, Peoples R China
关键词
atomic force microscopy; contact potential difference; Kelvin probe force microscopy; perovskites; photoinduced force microscopy; MODULATION-DETECTION; SCAN SPEED; RESOLUTION; NANOSCALE; AMPLITUDE;
D O I
10.1002/smll.202102495
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Kelvin probe force microscopy (KPFM) is a popular technique for mapping the surface potential at the nanoscale through measurement of the Coulombic force between an atomic force microscopy (AFM) tip and sample. The lateral resolution of conventional KPFM variants is limited to between approximate to 35 and 100 nm in ambient conditions due to the long-range nature of the Coulombic force. In this article, a novel way of generating the Coulombic force in tapping mode KPFM without the need for an external AC driving voltage is presented. A field-effect transistor (FET) is used to directly switch the electrical connectivity of the tip and sample on and off periodically. The resulting Coulomb force induced by Fermi level alignment of the tip and sample results in a detectable change of the cantilever oscillation at the FET-switching frequency. The resulting FET-switched KPFM delivers a spatial resolution of approximate to 25 nm and inherits the high operational speed of the AFM tapping mode. Moreover, the FET-switched KPFM is integrated with photoinduced force microscopy (PiFM), enabling simultaneous acquisitions of high spatial resolution chemical distributions and surface potential maps. The integrated FET-switched KPFM with PiFM is expected to facilitate characterizations of nanoscale electrical properties of photoactive materials, semiconductors, and ferroelectric materials.
引用
收藏
页数:11
相关论文
共 64 条
[1]   Anomalous isoelectronic chalcogen rejection in 2D anisotropic vdW TiS3(1-x)Se3x trichalcogenides [J].
Agarwal, Ashutosh ;
Qin, Ying ;
Chen, Bin ;
Blei, Mark ;
Wu, Kedi ;
Liu, Lei ;
Shen, Yuxia ;
Wright, David ;
Green, Matthew D. ;
Zhuang, Houlong ;
Tongay, Sefaattin .
NANOSCALE, 2018, 10 (33) :15654-15660
[2]   Frontiers, opportunities, and challenges in perovskite solar cells: A critical review [J].
Ansari, Mohammed Istafaul Haque ;
Qurashi, Ahsanulhaq ;
Nazeeruddin, Mohammad Khaja .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS, 2018, 35 :1-24
[3]   Organometal halide perovskite solar cells: degradation and stability [J].
Berhe, Taame Abraha ;
Su, Wei-Nien ;
Chen, Ching-Hsiang ;
Pan, Chun-Jern ;
Cheng, Ju-Hsiang ;
Chen, Hung-Ming ;
Tsai, Meng-Che ;
Chen, Liang-Yih ;
Dubale, Amare Aregahegn ;
Hwang, Bing-Joe .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (02) :323-356
[4]   SCAN SPEED LIMIT IN ATOMIC FORCE MICROSCOPY [J].
BUTT, HJ ;
SIEDLE, P ;
SEIFERT, K ;
FENDLER, K ;
SEEGER, T ;
BAMBERG, E ;
WEISENHORN, AL ;
GOLDIE, K ;
ENGEL, A .
JOURNAL OF MICROSCOPY-OXFORD, 1993, 169 :75-84
[5]   Switchable Perovskite Photovoltaic Sensors for Bioinspired Adaptive Machine Vision [J].
Chen, Qilai ;
Zhang, Ying ;
Liu, Shuzhi ;
Han, Tingting ;
Chen, Xinhui ;
Xu, Yanqing ;
Meng, Ziqi ;
Zhang, Guanglei ;
Zheng, Xuejun ;
Zhao, Jinjin ;
Cao, Guozhong ;
Liu, Gang .
ADVANCED INTELLIGENT SYSTEMS, 2020, 2 (09)
[6]   Highly flexible and semi-transparent Ag-Cu alloy electrodes for high performance flexible thin film heaters [J].
Cho, Kyung-Su ;
Kim, Eunah ;
Kim, Dong-Wook ;
Kim, Han-Ki .
RSC ADVANCES, 2017, 7 (72) :45484-45494
[7]  
Colchero J., 2001, MAT PHYS, V64
[8]   Towards nanoscale electrical measurements in liquid by advanced KPFM techniques: a review [J].
Collins, Liam ;
Kilpatrick, Jason I. ;
Kalinin, Sergei V. ;
Rodriguez, Brian J. .
REPORTS ON PROGRESS IN PHYSICS, 2018, 81 (08)
[9]   Heterodyne force microscopy of PMMA/rubber nanocomposites: nanomapping of viscoelastic response at ultrasonic frequencies [J].
Cuberes, MT ;
Assender, HE ;
Briggs, GAD ;
Kolosov, OV .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2000, 33 (19) :2347-2355
[10]   DNA-Based Fabrication for Nanoelectronics [J].
Dai, Xinpei ;
Li, Qian ;
Aldalbahi, Ali ;
Wang, Lihua ;
Fan, Chunhai ;
Liu, Xiaoguo .
NANO LETTERS, 2020, 20 (08) :5604-5615