Goal-Oriented Error Estimation for the Reduced Basis Method, with Application to Sensitivity Analysis

被引:6
作者
Janon, Alexandre [1 ]
Nodet, Maelle [2 ]
Prieur, Clementine [2 ]
机构
[1] Univ Paris Sud, Lab Math Orsay, Orsay, France
[2] Univ Grenoble 1, Lab Jean Kuntzmann, INRIA, MOISE, Grenoble, France
关键词
Reduced basis method; Surrogate model; Reduced order modelling; Response surface method; Scientific computation; Sensitivity analysis; Sobol index computation; Monte-Carlo method; OPTIMIZATION; REDUCTION; BOUNDS;
D O I
10.1007/s10915-015-0127-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The reduced basis method is a powerful model reduction technique designed to speed up the computation of multiple numerical solutions of parametrized partial differential equations. We consider a quantity of interest, which is a linear functional of the PDE solution. A new probabilistic error bound for the reduced model is proposed. It is efficiently and explicitly computable, and we show on different examples that this error bound is sharper than existing ones. We include application of our work to sensitivity analysis studies.
引用
收藏
页码:21 / 41
页数:21
相关论文
共 25 条
  • [1] [Anonymous], 2000, WILEY SERIES PROBABI
  • [2] [Anonymous], P 16 AIAA COMP FLUID
  • [3] Buffa A., 2009, MATH MODELL NUMER AN
  • [4] Goal-oriented, model-constrained optimization for reduction of large-scale systems
    Bui-Thanh, T.
    Willcox, K.
    Ghattas, O.
    Waanders, B. van Bloemen
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 224 (02) : 880 - 896
  • [5] Ciarlet P.G, 2002, FINITE ELEMENT METHO, DOI DOI 10.1137/1.9780898719208
  • [6] A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations
    Grepl, MA
    Patera, AT
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (01): : 157 - 181
  • [7] A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants
    Huynh, D. B. P.
    Rozza, G.
    Sen, S.
    Patera, A. T.
    [J]. COMPTES RENDUS MATHEMATIQUE, 2007, 345 (08) : 473 - 478
  • [8] Modeling of transitional channel flow using balanced proper orthogonal decomposition
    Ilaka, Milos
    Rowley, Clarence W.
    [J]. PHYSICS OF FLUIDS, 2008, 20 (03)
  • [9] Janon A., 2012, INT J UNCERTAIN QUAN
  • [10] Janon A., 2010, MATH MODELL IN PRESS