Non-uniform dependence of the data-to-solution map for the Hunter-Saxton equation in Besov spaces

被引:9
作者
Holmes, John [1 ]
Tiglay, Feride [2 ]
机构
[1] Ohio State Univ, Dept Math, 231 W 18th Ave, Columbus, OH 43210 USA
[2] Ohio State Univ, Dept Math, Newark, OH 43055 USA
关键词
Well-posedness; Initial value problem; Cauchy problem; Besov spaces; Sobolev spaces; Multi-linear estimates; Hunter-Saxton equation; PERIODIC CAUCHY-PROBLEM; CAMASSA-HOLM EQUATION; WELL-POSEDNESS; ILL-POSEDNESS; CH EQUATION;
D O I
10.1007/s00028-018-0436-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Cauchy problem for the Hunter-Saxton equation is known to be locally well posed in Besov spaces B-2,r(s) on the circle. We prove that the data-to-solution map is not uniformly continuous from any bounded subset of B(2,)(r)s to C([0, T]; B(2,)(r)s). We also show that the solution map is Holder continuous with respect to a weaker topology.
引用
收藏
页码:1173 / 1187
页数:15
相关论文
共 21 条
[1]  
Bahouri H., 2011, GRUNDLEHREN MATH WIS, P343
[2]   Sharp well-posedness results for the BBM equation [J].
Bona, Jerry L. ;
Tzvetkov, Nikolay .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 23 (04) :1241-1252
[3]  
Christ M, 2003, AM J MATH, V125, P1235
[4]   A note on well-posedness for Camassa-Holm equation [J].
Danchin, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 192 (02) :429-444
[5]  
Danchin R., 2001, DIFFERENTIAL INTEGRA, V14, P953
[6]   GROUPS OF DIFFEOMORPHISMS AND MOTION OF AN INCOMPRESSIBLE FLUID [J].
EBIN, DG ;
MARSDEN, J .
ANNALS OF MATHEMATICS, 1970, 92 (01) :102-&
[7]   Holder continuity of the solution map for the Novikov equation [J].
Himonas, A. Alexandrou ;
Holmes, John .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (06)
[8]   ON WELL-POSEDNESS OF THE DEGASPERIS-PROCESI EQUATION [J].
Himonas, A. Alexandrou ;
Holliman, Curtis .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 31 (02) :469-488
[9]   Non-Uniform Dependence for the Periodic CH Equation [J].
Himonas, A. Alexandrou ;
Kenig, Carlos ;
Misiolek, Gerard .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2010, 35 (06) :1145-1162
[10]  
Himonas AA, 2009, DIFFER INTEGRAL EQU, V22, P201