Non-uniform dependence of the data-to-solution map for the Hunter-Saxton equation in Besov spaces

被引:9
|
作者
Holmes, John [1 ]
Tiglay, Feride [2 ]
机构
[1] Ohio State Univ, Dept Math, 231 W 18th Ave, Columbus, OH 43210 USA
[2] Ohio State Univ, Dept Math, Newark, OH 43055 USA
关键词
Well-posedness; Initial value problem; Cauchy problem; Besov spaces; Sobolev spaces; Multi-linear estimates; Hunter-Saxton equation; PERIODIC CAUCHY-PROBLEM; CAMASSA-HOLM EQUATION; WELL-POSEDNESS; ILL-POSEDNESS; CH EQUATION;
D O I
10.1007/s00028-018-0436-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Cauchy problem for the Hunter-Saxton equation is known to be locally well posed in Besov spaces B-2,r(s) on the circle. We prove that the data-to-solution map is not uniformly continuous from any bounded subset of B(2,)(r)s to C([0, T]; B(2,)(r)s). We also show that the solution map is Holder continuous with respect to a weaker topology.
引用
收藏
页码:1173 / 1187
页数:15
相关论文
共 50 条
  • [1] Non-uniform dependence of the data-to-solution map for the Hunter–Saxton equation in Besov spaces
    John Holmes
    Feride Tiglay
    Journal of Evolution Equations, 2018, 18 : 1173 - 1187
  • [2] CONTINUITY OF THE DATA-TO-SOLUTION MAP FOR THE FORQ EQUATION IN BESOV SPACES
    Holmes, John
    Tiglay, Feride
    Thompson, Ryan
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2021, 34 (5-6) : 295 - 314
  • [3] Non-uniform dependence on initial data for the Camassa-Holm equation in Besov spaces
    Li, Jinlu
    Yu, Yanghai
    Zhu, Weipeng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (10) : 8686 - 8700
  • [4] Non-uniform dependence of the data-to-solution map for the rotation b-family system
    Yu, Yanghai
    Li, Jinlu
    Wu, Xing
    APPLICABLE ANALYSIS, 2025, 104 (02) : 354 - 369
  • [5] Non-uniform dependence of the data-to-solution map for the two-component Fornberg-Whitham system
    Yu, Yanghai
    Li, Jinlu
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (01) : 59 - 76
  • [6] Non-uniform dependence on initial data for the Camassa-Holm equation in Besov spaces: Revisited
    Li, Jinlu
    Yu, Yanghai
    Zhu, Weipeng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 390 : 426 - 450
  • [7] Non-uniform Dependence for the Novikov Equation in Besov Spaces
    Li, Jinlu
    Li, Min
    Zhu, Weipeng
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2020, 22 (04)
  • [8] Non-uniform dependence on initial data for the Euler equations in Besov spaces
    Li, Jinlu
    Yu, Yanghai
    Zhu, Weipeng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 409 : 774 - 789
  • [9] Non-Uniform Dependence for the Periodic CH Equation
    Himonas, A. Alexandrou
    Kenig, Carlos
    Misiolek, Gerard
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2010, 35 (06) : 1145 - 1162
  • [10] Well-posedness for the Cauchy problem of the modified Hunter-Saxton equation in the Besov spaces
    Mi, Yongsheng
    Mu, Chunlai
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (17) : 4061 - 4074