Linear Control Theory for Gene Network Modeling

被引:12
作者
Shin, Yong-Jun [1 ]
Bleris, Leonidas [1 ,2 ]
机构
[1] Univ Texas Dallas, Dept Elect Engn, Richardson, TX 75083 USA
[2] Univ Texas Dallas, Dept Bioengn, Richardson, TX 75083 USA
来源
PLOS ONE | 2010年 / 5卷 / 09期
关键词
REGULATORY NETWORKS; SYNTHETIC BIOLOGY; EXPRESSION; CIRCUIT; NOISE; SYSTEMS; ROBUST; MOTIFS;
D O I
10.1371/journal.pone.0012785
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Systems biology is an interdisciplinary field that aims at understanding complex interactions in cells. Here we demonstrate that linear control theory can provide valuable insight and practical tools for the characterization of complex biological networks. We provide the foundation for such analyses through the study of several case studies including cascade and parallel forms, feedback and feedforward loops. We reproduce experimental results and provide rational analysis of the observed behavior. We demonstrate that methods such as the transfer function (frequency domain) and linear state-space (time domain) can be used to predict reliably the properties and transient behavior of complex network topologies and point to specific design strategies for synthetic networks.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [21] Considerations for using integral feedback control to construct a perfectly adapting synthetic gene network
    Ang, Jordan
    Bagh, Sangram
    Ingalls, Brian P.
    McMillen, David R.
    JOURNAL OF THEORETICAL BIOLOGY, 2010, 266 (04) : 723 - 738
  • [22] A Network Control Theory Approach to Virus Spread Mitigation
    Roy, Sandip
    Wan, Yan
    Saberi, Ali
    2009 IEEE CONFERENCE ON TECHNOLOGIES FOR HOMELAND SECURITY, 2009, : 591 - +
  • [23] Modeling gene regulatory networks using neural network architectures
    Shu, Hantao
    Zhou, Jingtian
    Lian, Qiuyu
    Li, Han
    Zhao, Dan
    Zeng, Jianyang
    Ma, Jianzhu
    NATURE COMPUTATIONAL SCIENCE, 2021, 1 (07): : 491 - 501
  • [24] Stochastic constrained linear quadratic control in a network of smart microgrids
    Bersani, Chiara
    Dagdougui, Hanane
    Ouammi, Ahmed
    Sacile, Roberto
    IET RENEWABLE POWER GENERATION, 2020, 14 (07) : 1193 - 1200
  • [25] A Comparison Study of Reverse Engineering Gene Regulatory Network Modeling
    Wang, Charles C. N.
    Chang, Pei-Chun
    Sheu, Phillip C. Y.
    Tsai, Jeffrey J. P.
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE), 2016, : 356 - 362
  • [26] Network Modeling in Biology: Statistical Methods for Gene and Brain Networks
    Wang, Y. X. Rachel
    Li, Lexin
    Li, Jingyi Jessica
    Huang, Haiyan
    STATISTICAL SCIENCE, 2021, 36 (01) : 89 - 108
  • [27] k- Strong Inference Algorithm: A Hybrid Information Theory Based Gene Network Inference Algorithm
    Cingiz, Mustafa Ozgur
    MOLECULAR BIOTECHNOLOGY, 2023, 66 (11) : 3213 - 3225
  • [28] Discovering Candidates for Gene Network Expansion by Distributed Volunteer Computing
    Asnicar, Francesco
    Erculiani, Luca
    Galante, Francesca
    Gallo, Caterina
    Masera, Luca
    Morettin, Paolo
    Sella, Nadir
    Semeniuta, Stanislau
    Tolio, Thomas
    Malacarne, Giulia
    Engelen, Kristof
    Argentini, Andrea
    Cavecchia, Valter
    Moser, Claudio
    Blanzieri, Enrico
    2015 IEEE TRUSTCOM/BIGDATASE/ISPA, VOL 3, 2015, : 248 - 253
  • [29] Real-time gene newtorks control in microfluidics
    Menolascina, Filippo
    2014 EUROPEAN CONTROL CONFERENCE (ECC), 2014, : 1187 - 1192
  • [30] Brain and cognitive reserve: Translation via network control theory
    Medaglia, John Dominic
    Pasqualetti, Fabio
    Hamilton, Roy H.
    Thompson-Schill, Sharon L.
    Bassett, Danielle S.
    NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2017, 75 : 53 - 64