Linear Control Theory for Gene Network Modeling

被引:12
作者
Shin, Yong-Jun [1 ]
Bleris, Leonidas [1 ,2 ]
机构
[1] Univ Texas Dallas, Dept Elect Engn, Richardson, TX 75083 USA
[2] Univ Texas Dallas, Dept Bioengn, Richardson, TX 75083 USA
来源
PLOS ONE | 2010年 / 5卷 / 09期
关键词
REGULATORY NETWORKS; SYNTHETIC BIOLOGY; EXPRESSION; CIRCUIT; NOISE; SYSTEMS; ROBUST; MOTIFS;
D O I
10.1371/journal.pone.0012785
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Systems biology is an interdisciplinary field that aims at understanding complex interactions in cells. Here we demonstrate that linear control theory can provide valuable insight and practical tools for the characterization of complex biological networks. We provide the foundation for such analyses through the study of several case studies including cascade and parallel forms, feedback and feedforward loops. We reproduce experimental results and provide rational analysis of the observed behavior. We demonstrate that methods such as the transfer function (frequency domain) and linear state-space (time domain) can be used to predict reliably the properties and transient behavior of complex network topologies and point to specific design strategies for synthetic networks.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
[21]   A Network Control Theory Approach to Virus Spread Mitigation [J].
Roy, Sandip ;
Wan, Yan ;
Saberi, Ali .
2009 IEEE CONFERENCE ON TECHNOLOGIES FOR HOMELAND SECURITY, 2009, :591-+
[22]   Considerations for using integral feedback control to construct a perfectly adapting synthetic gene network [J].
Ang, Jordan ;
Bagh, Sangram ;
Ingalls, Brian P. ;
McMillen, David R. .
JOURNAL OF THEORETICAL BIOLOGY, 2010, 266 (04) :723-738
[23]   Modeling gene regulatory networks using neural network architectures [J].
Shu, Hantao ;
Zhou, Jingtian ;
Lian, Qiuyu ;
Li, Han ;
Zhao, Dan ;
Zeng, Jianyang ;
Ma, Jianzhu .
NATURE COMPUTATIONAL SCIENCE, 2021, 1 (07) :491-501
[24]   Network Modeling in Biology: Statistical Methods for Gene and Brain Networks [J].
Wang, Y. X. Rachel ;
Li, Lexin ;
Li, Jingyi Jessica ;
Huang, Haiyan .
STATISTICAL SCIENCE, 2021, 36 (01) :89-108
[25]   A Comparison Study of Reverse Engineering Gene Regulatory Network Modeling [J].
Wang, Charles C. N. ;
Chang, Pei-Chun ;
Sheu, Phillip C. Y. ;
Tsai, Jeffrey J. P. .
2016 IEEE 16TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE), 2016, :356-362
[26]   Stochastic constrained linear quadratic control in a network of smart microgrids [J].
Bersani, Chiara ;
Dagdougui, Hanane ;
Ouammi, Ahmed ;
Sacile, Roberto .
IET RENEWABLE POWER GENERATION, 2020, 14 (07) :1193-1200
[27]   k- Strong Inference Algorithm: A Hybrid Information Theory Based Gene Network Inference Algorithm [J].
Cingiz, Mustafa OEzguer .
MOLECULAR BIOTECHNOLOGY, 2024, 66 (11) :3213-3225
[28]   Discovering Candidates for Gene Network Expansion by Distributed Volunteer Computing [J].
Asnicar, Francesco ;
Erculiani, Luca ;
Galante, Francesca ;
Gallo, Caterina ;
Masera, Luca ;
Morettin, Paolo ;
Sella, Nadir ;
Semeniuta, Stanislau ;
Tolio, Thomas ;
Malacarne, Giulia ;
Engelen, Kristof ;
Argentini, Andrea ;
Cavecchia, Valter ;
Moser, Claudio ;
Blanzieri, Enrico .
2015 IEEE TRUSTCOM/BIGDATASE/ISPA, VOL 3, 2015, :248-253
[29]   Real-time gene newtorks control in microfluidics [J].
Menolascina, Filippo .
2014 EUROPEAN CONTROL CONFERENCE (ECC), 2014, :1187-1192
[30]   Network Modeling and Control of Dynamic Disease Pathways, Review and Perspectives [J].
Hsiao, Yen-Che ;
Dutta, Abhishek .
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2024, 21 (05) :1211-1230