Evolution of wave packets in quasi-one-dimensional and one-dimensional random media: Diffusion versus localization

被引:32
|
作者
Izrailev, FM
Kottos, T
Politi, A
Tsironis, GP
机构
[1] UNIV CRETE,DEPT PHYS,IRAKLION 71003,GREECE
[2] RES CTR CRETE,IRAKLION 71003,GREECE
[3] IST NAZL OTTICA,I-50125 FLORENCE,ITALY
[4] IST NAZL FIS NUCL,I-50125 FLORENCE,ITALY
来源
PHYSICAL REVIEW E | 1997年 / 55卷 / 05期
关键词
D O I
10.1103/PhysRevE.55.4951
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study numerically the evolution of wave packets in quasi-one-dimensional random systems described by a tight-binding Hamiltonian with long-range random interactions. Results are presented for the scaling properties of the width of packets in three time regimes: ballistic, diffusive, and localized. Particular attention is given to the fluctuations of packet widths in both the diffusive and localized regime. Scaling properties of the steady-state distribution are also analyzed and compared with a theoretical expression borrowed from the one-dimensional Anderson theory. Analogies and differences with the kicked rotator model and the one-dimensional localization are discussed.
引用
收藏
页码:4951 / 4963
页数:13
相关论文
共 50 条
  • [41] TRAP-LIMITED HOPPING IN ONE-DIMENSIONAL AND QUASI-ONE-DIMENSIONAL SYSTEMS.
    Prigodin, V.N.
    Seidel, Ch.
    Nakhmedov, A.P.
    1600, (128):
  • [42] Simulation and growth of gold on silicon oxide in one-dimensional and quasi-one-dimensional arrays
    Boero, M
    Vincent, JK
    Inkson, JC
    Mejias, M
    Vieu, C
    Launois, H
    Mulheran, PA
    JOURNAL OF APPLIED PHYSICS, 2000, 87 (10) : 7261 - 7265
  • [43] Electrical analogue of one-dimensional and quasi-one-dimensional Aubry–André–Harper lattices
    Sudin Ganguly
    Santanu K. Maiti
    Scientific Reports, 13
  • [44] Transition from a one-dimensional to a quasi-one-dimensional state in interacting quantum wires
    Meyer, Julia S.
    Matveev, K. A.
    Larkin, A. I.
    PHYSICAL REVIEW LETTERS, 2007, 98 (12)
  • [45] QUASI-LOCALIZATION EFFECTS IN RANDOM ONE-DIMENSIONAL HOPPING SYSTEMS
    BERNASCONI, J
    SCHNEIDER, WR
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 1982, 85 (1-4): : 109 - 119
  • [46] Integral Characteristics of Wave Packets in the Problem of the Evolution of A Wave Function on A One-Dimensional Lattice
    V. N. Likhachov
    G. A. Vinogradov
    Theoretical and Mathematical Physics, 2018, 197 : 1615 - 1625
  • [47] Integral Characteristics of Wave Packets in the Problem of the Evolution of A Wave Function on A One-Dimensional Lattice
    Likhachov, V. N.
    Vinogradov, G. A.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2018, 197 (02) : 1615 - 1625
  • [48] SCALING THEORY OF LOCALIZATION FOR A QUASI-ONE-DIMENSIONAL SYSTEM
    APEL, W
    RICE, TM
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1983, 16 (32): : 1151 - 1154
  • [49] Strong localization of electrons in quasi-one-dimensional conductors
    Khavin, YB
    Gershenson, ME
    Bogdanov, AL
    PHYSICAL REVIEW B, 1998, 58 (12): : 8009 - 8019
  • [50] Anderson Localisation for Quasi-One-Dimensional Random Operators
    Macera, Davide
    Sodin, Sasha
    ANNALES HENRI POINCARE, 2022, 23 (12): : 4227 - 4247