Monotonicity and rotundity of Lorentz spaces Γp, w

被引:18
作者
Ciesielski, Maciej [1 ]
Kaminska, Anna [2 ]
Kolwicz, Pawel [1 ]
Pluciennik, Ryszard [1 ]
机构
[1] Poznan Tech Univ, Inst Math, PL-60965 Poznan, Poland
[2] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
关键词
Lorentz spaces; Uniform monotonicity; Lower uniform monotonicity; Strict monotonicity; Rotundity; CALDERON-LOZANOVSKII SPACES; MUSIELAK-ORLICZ SPACES; BANACH-LATTICES; UNIFORM ROTUNDITY; APPROXIMATION; CONVEXITY; CONCAVITY;
D O I
10.1016/j.na.2011.11.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Criteria for rotundity, strict monotonicity, and lower local uniform monotonicity of the Lorentz spaces Gamma(p, w) of maximal functions are given under arbitrary nonnegative weight function w. Necessary conditions are also established for uniform monotonicity of the spaces G(p, w) for 1 <= p <= infinity. Moreover, the spaces Gamma(1, w) that are uniformly monotone are characterized. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2713 / 2723
页数:11
相关论文
共 26 条
[1]  
Akcoglu MA., 1985, Rend. Circ. Mat. Palermo II Ser. Suppl, V8, P325
[2]  
ALTSCHULER Z, 1975, ISR J MATH, V6, P260
[3]  
Bennett C., 1988, PURE APPL MATH SERIE, V129
[4]  
Birkhoff G., 1967, Amer. Math. Soc. Colloq. Publ., V25
[5]   ON THE GEOMETRY OF SOME CALDERON-LOZANOVSKII INTERPOLATION SPACES [J].
CERDA, J ;
HUDZIK, H ;
MASTYLO, M .
INDAGATIONES MATHEMATICAE-NEW SERIES, 1995, 6 (01) :35-49
[6]  
Cheney E.W., 1998, INTRO APPROXIMATION
[7]   Gateaux derivatives and their applications to approximation in Lorentz spaces Γp,w [J].
Ciesielski, Maciej ;
Kaminska, Anna ;
Pluciennik, Ryszard .
MATHEMATISCHE NACHRICHTEN, 2009, 282 (09) :1242-1264
[8]  
Day M.M., 1941, Bull. Am. Math. Soc., V47, P313, DOI 10.1090/S0002-9904-1941-07451-3
[9]  
Foralewski P, 2007, J CONVEX ANAL, V14, P395
[10]   UNIFORM CONVEXITY IN FUNCTION SPACES [J].
HALPERIN, I .
DUKE MATHEMATICAL JOURNAL, 1954, 21 (02) :195-204