Chirped solitons in optical monomode fibres modelled with Chen-Lee-Liu equation

被引:53
作者
Younas, Bushra [1 ]
Younis, Muhammad [1 ,2 ]
机构
[1] Univ Lahore, Dept Math & Stat, Lahore 54000, Pakistan
[2] Univ Punjab, Ctr Undergrad Studies, Lahore 54590, Pakistan
来源
PRAMANA-JOURNAL OF PHYSICS | 2019年 / 94卷 / 01期
关键词
Chirped solitons; Chen-Lee-Liu equation; dual power law of nonlinearity; NONLINEAR SCHRODINGER-EQUATION; BREATHER WAVES; ROGUE WAVES; LUMP;
D O I
10.1007/s12043-019-1872-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The paper studies the extraction of chirped soliton to Chen-Lee-Liu equation (CLLE) with the group velocity dispersion (GVD) and self-steeping coefficients that describe pulse transmission through optical monomode fibres. The chirped bright, dark and singular optical solitons are obtained and the results show that nonlinear chirp parameters strongly vary on self-steeping, GVD and spreading effects. The constraint conditions for the existence of solitons are also derived during the derivation. The results are helpful and important for understanding the propagation of optical pulses.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Time-fractional Chen-Lee-Liu equation: Various optical solutions arising in optical fiber
    Murad, Muhammad Amin Sadiq
    Hamasalh, Faraidun Kadir
    Ismael, Hajar Farhan
    [J]. JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2024, 33 (06)
  • [22] A Spectral Collocation Technique for Riesz Fractional Chen-Lee-Liu Equation
    Abdelkawy, M. A.
    Alyami, S. A.
    [J]. JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [23] Dynamic of the smooth positons of the higher-order Chen-Lee-Liu equation
    Hu, Aijuan
    Li, Maohua
    He, Jingsong
    [J]. NONLINEAR DYNAMICS, 2021, 104 (04) : 4329 - 4338
  • [24] Higher-dimensional Chen-Lee-Liu equation and asymmetric peakon soliton
    Han, Qiao-Hong
    Jia, Man
    [J]. CHINESE PHYSICS B, 2024, 33 (04)
  • [25] Rogue wave solutions of a higher-order Chen-Lee-Liu equation
    Zhang, Jing
    Liu, Wei
    Qiu, Deqin
    Zhang, Yongshuai
    Porsezian, K.
    He, Jingsong
    [J]. PHYSICA SCRIPTA, 2015, 90 (05)
  • [26] A Riemann-Hilbert Approach to the Chen-Lee-Liu Equation on the Half Line
    Ning ZHANG
    Tie-cheng XIA
    En-gui FAN
    [J]. ActaMathematicaeApplicataeSinica, 2018, 34 (03) : 493 - 515
  • [27] A Riemann-Hilbert Approach to the Chen-Lee-Liu Equation on the Half Line
    Ning Zhang
    Tie-cheng Xia
    En-gui Fan
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2018, 34 : 493 - 515
  • [28] Exact solutions of the nonlocal higher-order Chen-Lee-Liu equation
    Jin, Jie
    Zhang, Wenyun
    Zhang, Yi
    Wu, Lifei
    [J]. OPTIK, 2023, 277
  • [29] A Riemann-Hilbert Approach to the Chen-Lee-Liu Equation on the Half Line
    Zhang, Ning
    Xia, Tie-cheng
    Fan, En-gui
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2018, 34 (03): : 493 - 515
  • [30] Cubic-quartic optical soliton perturbation with Chen-Lee-Liu equation by sine-Gordon equation approach
    Yildirim, Yakup
    Biswas, Anjan
    Alshehri, Hashim M.
    Belic, Milivoj R.
    [J]. OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2022, 16 (7-8): : 342 - 347