UnOS: Unified Unsupervised Optical-flow and Stereo-depth Estimation by Watching Videos

被引:397
作者
Wang, Yang [1 ]
Wang, Peng [1 ]
Yang, Zhenheng [2 ]
Luo, Chenxu [3 ]
Yang, Yi [1 ]
Xu, Wei [1 ]
机构
[1] Baidu Res, Sunnyvale, CA 94089 USA
[2] Univ Southern Calif, Los Angeles, CA 90007 USA
[3] Johns Hopkins Univ, Baltimore, MD 21218 USA
来源
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019) | 2019年
关键词
VISUAL ODOMETRY;
D O I
10.1109/CVPR.2019.00826
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose UnOS, an unified system for unsupervisedopticalflow and stereo depth estimation using convolutional neural network (CNN) by taking advantages of theirinherentgeometricalconsistency based on the rigidscene assumption [31]. UnOS significantly outperforms other state-of-the-art(SOTA) unsupervisedapproachesthat treatedthe two tasks independently. Specifically, given two consecutive stereo image pairsfrom a video, UnOS estimates per-pixel stereo depth images, camera ego-motion and opticalflow with three parallelCNNs. Based on these quantities, UnOS computes rigid optical flow and compares it againstthe opticalflow estimatedfrom the FlowNet, yielding pixels satisfying the rigid-sceneassumption. Then, we encourage geometricalconsistency between the two estimated flows within rigid regions, from which we derive a rigid-aware direct visual odometry (RDVO) module. We also propose rigid and occlusion-awareflow-consistency losses for the learning of UnOS. We evaluated our results on the popularKITTI datasetover 4 related tasks, i.e. stereo depth, opticalflow, visual odometry and motion segmentation.
引用
收藏
页码:8063 / 8073
页数:11
相关论文
共 61 条
[1]  
[Anonymous], 2018, P IEEE C COMP VIS PA
[2]  
[Anonymous], 2018, EUR C COMP VIS
[3]  
[Anonymous], 2010, Vision
[4]  
[Anonymous], 2017, IEEE C COMP VIS PATT
[5]  
[Anonymous], 2018, ARXIV180610556
[6]  
[Anonymous], 2018, P IEEE C COMP VIS PA
[7]  
[Anonymous], 2017, CVPR
[8]  
[Anonymous], J AUTOMATION CONTROL
[9]  
[Anonymous], 2017, CVPR
[10]  
[Anonymous], 2017, CVPR