Visual Analysis of Spatio-Temporal Data: Applications in Weather Forecasting

被引:23
|
作者
Diehl, A. [1 ]
Pelorosso, L. [1 ]
Delrieux, C. [2 ]
Saulo, C. [3 ]
Ruiz, J. [3 ]
Groeller, M. E. [4 ]
Bruckner, S. [5 ]
机构
[1] Univ Buenos Aires, RA-1053 Buenos Aires, DF, Argentina
[2] South Natl Univ, Buenos Aires, DF, Argentina
[3] UMI IFAECI CNRS, DCAO FCEN UBA, CIMA CONICET UBA, Buenos Aires, DF, Argentina
[4] Vienna Univ Technol, Vienna, Austria
[5] Univ Bergen, N-5020 Bergen, Norway
关键词
DATA EXPLORATION; TIME-SERIES; VISUALIZATION; PATTERNS;
D O I
10.1111/cgf.12650
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Weather conditions affect multiple aspects of human life such as economy, safety, security, and social activities. For this reason, weather forecast plays a major role in society. Currently weather forecasts are based on Numerical Weather Prediction (NWP) models that generate a representation of the atmospheric flow. Interactive visualization of geo-spatial data has been widely used in order to facilitate the analysis of NWP models. This paper presents a visualization system for the analysis of spatio-temporal patterns in short-term weather forecasts. For this purpose, we provide an interactive visualization interface that guides users from simple visual overviews to more advanced visualization techniques. Our solution presents multiple views that include a timeline with geo-referenced maps, an integrated webmap view, a forecast operation tool, a curve-pattern selector, spatial filters, and a linked meteogram. Two key contributions of this work are the timeline with geo-referenced maps and the curve-pattern selector. The latter provides novel functionality that allows users to specify and search for meaningful patterns in the data. The visual interface of our solution allows users to detect both possible weather trends and errors in the weather forecast model. We illustrate the usage of our solution with a series of case studies that were designed and validated in collaboration with domain experts.
引用
收藏
页码:381 / 390
页数:10
相关论文
共 50 条
  • [1] VAUD: A Visual Analysis Approach for Exploring Spatio-Temporal Urban Data
    Chen, Wei
    Huang, Zhaosong
    Wu, Feiran
    Zhu, Minfeng
    Guan, Huihua
    Maciejewski, Ross
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2018, 24 (09) : 2636 - 2648
  • [2] Spatio-Temporal Data Augmentation for Visual Surveillance
    Kim, Jae-Yeul
    Ha, Jong-Eun
    IEEE ACCESS, 2021, 9 : 165014 - 165033
  • [3] Spatio-temporal clustering analysis and technological forecasting of nanotechnology using patent data
    Forestal, Roberto Louis
    Lee, Hsin Inn
    Pi, Shih-Ming
    Liu, Su-Houn
    TECHNOLOGY ANALYSIS & STRATEGIC MANAGEMENT, 2024, 36 (05) : 1037 - 1053
  • [4] Visual analytics for spatio-temporal air quality data
    Bachechi, Chiara
    Desimoni, Federico
    Po, Laura
    Martinez Casas, David
    2020 24TH INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV 2020), 2020, : 460 - 466
  • [5] Feature Selection on Spatio-Temporal Data for Solar Irradiance Forecasting
    Carranza-Garcia, Manuel
    Lara-Benitez, Pedro
    Maria Luna-Romera, Jose
    Riquelme, Jose C.
    16TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING MODELS IN INDUSTRIAL AND ENVIRONMENTAL APPLICATIONS (SOCO 2021), 2022, 1401 : 654 - 664
  • [6] DSTVis: toward better interactive visual analysis of Drones' spatio-temporal data
    Chen, Fengxin
    Yu, Ye
    Ni, Liangliang
    Zhang, Zhenya
    Lu, Qiang
    JOURNAL OF VISUALIZATION, 2024, 27 (04) : 623 - 638
  • [7] Visual Analysis of Spatio-temporal Phenomena with 1D Projections
    Franke, M.
    Martin, H.
    Koch, S.
    Kurzhals, K.
    COMPUTER GRAPHICS FORUM, 2021, 40 (03) : 335 - 347
  • [8] Visual analysis of air pollution spatio-temporal patterns
    Li, Jiayang
    Bi, Chongke
    VISUAL COMPUTER, 2023, 39 (08) : 3715 - 3726
  • [9] A Framework for Visual Analytics of Spatio-Temporal Sensor Observations from Data Streams
    Sibolla, Bolelang H.
    Coetzee, Serena
    Van Zyl, Terence L.
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2018, 7 (12)
  • [10] A FLEXIBLE APPROACH FOR SPATIO-TEMPORAL REMOTE SENSING DATA ANALYSIS
    Gens, Rudiger
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 4962 - 4964