DeepRibSt: a multi-feature convolutional neural network for predicting ribosome stalling

被引:1
|
作者
Zhang, Yuan [1 ,2 ]
Zhang, Sai [3 ]
He, Xizhi [2 ]
Lu, Jing [2 ]
Gao, Xieping [2 ,4 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
[2] Xiangtan Univ, Minist Educ, Key Lab Intelligent Comp & Informat Proc, Xiangtan 411105, Peoples R China
[3] Stanford Univ, Sch Med, Dept Genet, Stanford, CA 94305 USA
[4] Xiangnan Univ, Coll Med Imaging & Inspect, Chenzhou 423000, Peoples R China
基金
中国国家自然科学基金;
关键词
Ribosome stalling; Prediction; Multi-feature; Deep learning; Convolutional neural networks; SYNONYMOUS MUTATIONS; TRANSLATION; RNA; PROTEIN; DYSREGULATION; SEQUENCE; DATABASE; REVEALS;
D O I
10.1007/s11042-020-09598-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Ribosomes are a kind of organelle in cells, which are mainly involved in the translation process of genetic materials, but the underlying mechanisms associated with ribosome stalling are not fully understood. Thanks to the development of biological experimental techniques, many ribosome footprintings are generated, which can help us to study ribosome stalling. Effectively obtaining a precise ribosome stalling site will be helpful for the treatment of the related diseases, however there is still much room for the improvement of ribosome stalling prediction. In this study, we propose a new deep neural network model named DeepRibSt for the prediction of ribosome stalling sites. We first process the ribosome footprinting data to the training set. Then three new features, including evolutionary conservation, hydrophobicity, and amino dissociation constant, along with the previous sequence features, are extracted as input to the network. To improve the performance of the algorithm in ribosome stalling prediction, we use two convolutional layers and three fully connected layers to design a new network architecture. To verify the validity of our proposed DeepRibSt, we compare DeepRibSt with four popular deep neural networks, i.e., AlexNet, LeNet, ResNet, and LSTM on human (i.e., Battle2015 and Stumpf13) and yeast (i.e., Pop2014, Young15, and Brar12) data. To further demonstrate the effectiveness of DeepRibS, we compare DeepRibSt with the state-of-the-art method. The experimental results show that DeepRibSt outperforms all other methods and achieves the state-of-the-art performance in accuracy, recall, specificity, F1-score, and the area under the receiver operating characteristic curve (AUC).
引用
收藏
页码:17239 / 17255
页数:17
相关论文
共 50 条
  • [1] DeepRibSt: a multi-feature convolutional neural network for predicting ribosome stalling
    Yuan Zhang
    Sai Zhang
    Xizhi He
    Jing Lu
    Xieping Gao
    Multimedia Tools and Applications, 2021, 80 : 17239 - 17255
  • [2] MCA-Net: Multi-Feature Coding and Attention Convolutional Neural Network for Predicting lncRNA-Disease Association
    Zhang, Yuan
    Ye, Fei
    Gao, Xieping
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (05) : 2907 - 2919
  • [3] Multi-feature fusion for fault diagnosis of rotating machinery based on convolutional neural network
    Liu, Shaoqing
    Ji, Zhenshan
    Wang, Yong
    Zhang, Zuchao
    Xu, Zhanghou
    Kan, Chaohao
    Jin, Ke
    COMPUTER COMMUNICATIONS, 2021, 173 : 160 - 169
  • [4] Multi-Feature View-Based Shallow Convolutional Neural Network for Road Segmentation
    Junaid, Muhammad
    Ghafoor, Mubeen
    Hassan, Ali
    Khalid, Shehzad
    Tariq, Syed Ali
    Ahmed, Ghufran
    Zia, Tehseen
    IEEE ACCESS, 2020, 8 : 36612 - 36623
  • [5] Research on rectal tumor identification method by convolutional neural network based on multi-feature fusion
    Liang Z.
    Wu J.
    Wu, Jiansheng (ssewu@163.com), 1600, University of Split (34): : 31 - 41
  • [6] Detecting Abnormal Driving Behaviors by Smartphone Sensors Based on Multi-Feature Convolutional Neural Network
    Wang, Renjia
    Xie, Fei
    Zhang, Bin
    Liu, Wenhui
    Qian, Weixing
    Xian, Wang
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 6639 - 6644
  • [7] M-FANet: Multi-Feature Attention Convolutional Neural Network for Motor Imagery Decoding
    Qin, Yiyang
    Yang, Banghua
    Ke, Sixiong
    Liu, Peng
    Rong, Fenqi
    Xia, Xinxing
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2024, 32 : 401 - 411
  • [8] Phishing Detection Based on Multi-Feature Neural Network
    Yu, Shuaicong
    An, Changqing
    Yu, Tao
    Zhao, Ziyi
    Li, Tianshu
    Wang, Jilong
    2022 IEEE INTERNATIONAL PERFORMANCE, COMPUTING, AND COMMUNICATIONS CONFERENCE, IPCCC, 2022,
  • [9] Magnetic Anomaly Detection Using One-Dimensional Convolutional Neural Network With Multi-Feature Fusion
    Fan, Liming
    Hu, Hao
    Zhang, Xiaojun
    Wang, Huigang
    Kang, Chong
    IEEE SENSORS JOURNAL, 2022, 22 (12) : 11637 - 11643
  • [10] Inspection of Welding Defect Based on Multi-feature Fusion and a Convolutional Network
    Yang, Lei
    Fan, Junfeng
    Huo, Benyan
    Liu, Yanhong
    JOURNAL OF NONDESTRUCTIVE EVALUATION, 2021, 40 (04)