Non-Covalent Functionalization of Graphene Using Self-Assembly of Alkane-Amines

被引:68
作者
Long, Brenda [1 ]
Manning, Mary [1 ]
Burke, Micheal [1 ]
Szafranek, Bartholomaeus N. [2 ]
Visimberga, Giuseppe [1 ]
Thompson, Damien [1 ]
Greer, James C. [1 ]
Povey, Ian M. [1 ]
MacHale, John [1 ]
Lejosne, Guaylord [1 ]
Neumaier, Daniel [2 ]
Quinn, Aidan J. [1 ]
机构
[1] Univ Coll Cork, Tyndall Natl Inst, Cork, Ireland
[2] AMO GmbH, Adv Microelect Ctr Aachen AMICA, D-52074 Aachen, Germany
关键词
graphene; self-assembled monolayers; alkane-amine layers; field-effect devices; atomic layer deposition; FIELD-EFFECT TRANSISTORS; EPITAXIAL GRAPHENE; CARBON NANOTUBES; ROOM-TEMPERATURE; RAMAN-SCATTERING; MONOLAYERS; FILMS; HYSTERESIS; RESONATORS; GRAPHITE;
D O I
10.1002/adfm.201101956
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A simple, versatile method for non-covalent functionalization of graphene based on solution-phase assembly of alkane-amine layers is presented. Second-order MollerPlesset (MP2) perturbation theory on a cluster model (methylamine on pyrene) yields a binding energy of 220 meV for the aminegraphene interaction, which is strong enough to enable formation of a stable aminodecane layer at room temperature. Atomistic molecular dynamics simulations on an assembly of 1-aminodecane molecules indicate that a self-assembled monolayer can form, with the alkane chains oriented perpendicular to the graphene basal plane. The calculated monolayer height (1.7 nm) is in good agreement with atomic force microscopy data acquired for graphene functionalized with 1-aminodecane, which yield a continuous layer with mean thickness 1.7 nm, albeit with some island defects. Raman data also confirm that self-assembly of alkane-amines is a non-covalent process, i.e., it does not perturb the sp2 hybridization of the graphene. Passivation and adsorbate n-doping of graphene field-effect devices using 1-aminodecane, as well as high-density binding of plasmonic metal nanoparticles and seeded atomic layer deposition of inorganic dielectrics using 1,10-diaminodecane are also reported.
引用
收藏
页码:717 / 725
页数:9
相关论文
共 56 条
[1]   Solution-Gated Epitaxial Graphene as pH Sensor [J].
Ang, Priscilla Kailian ;
Chen, Wei ;
Wee, Andrew Thye Shen ;
Loh, Kian Ping .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (44) :14392-+
[2]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[3]   High, Size-Dependent Quality Factor in an Array of Graphene Mechanical Resonators [J].
Barton, Robert A. ;
Ilic, B. ;
van der Zande, Arend M. ;
Whitney, William S. ;
McEuen, Paul L. ;
Parpia, Jeevak M. ;
Craighead, Harold G. .
NANO LETTERS, 2011, 11 (03) :1232-1236
[4]   Electron-electron interactions and doping dependence of the two-phonon Raman intensity in graphene [J].
Basko, D. M. ;
Piscanec, S. ;
Ferrari, A. C. .
PHYSICAL REVIEW B, 2009, 80 (16)
[5]   Theory of resonant multiphonon Raman scattering in graphene [J].
Basko, D. M. .
PHYSICAL REVIEW B, 2008, 78 (12)
[6]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[7]   Influence of metal contacts and charge inhomogeneity on transport properties of graphene near the neutrality point [J].
Blake, P. ;
Yang, R. ;
Morozov, S. V. ;
Schedin, F. ;
Ponomarenko, L. A. ;
Zhukov, A. A. ;
Nair, R. R. ;
Grigorieva, I. V. ;
Novoselov, K. S. ;
Geim, A. K. .
SOLID STATE COMMUNICATIONS, 2009, 149 (27-28) :1068-1071
[8]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
[9]   Electromechanical resonators from graphene sheets [J].
Bunch, J. Scott ;
van der Zande, Arend M. ;
Verbridge, Scott S. ;
Frank, Ian W. ;
Tanenbaum, David M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
SCIENCE, 2007, 315 (5811) :490-493
[10]   Raman fingerprint of charged impurities in graphene [J].
Casiraghi, C. ;
Pisana, S. ;
Novoselov, K. S. ;
Geim, A. K. ;
Ferrari, A. C. .
APPLIED PHYSICS LETTERS, 2007, 91 (23)