CRITICAL PHENOMENA AND CRITICAL DIMENSIONS IN ANISOTROPIC NONLINEAR SYSTEMS

被引:0
作者
Babich, A. V. [1 ]
Berezovsky, S. V. [1 ]
Kitcenko, L. N. [1 ]
Klepikov, V. F. [1 ]
机构
[1] Inst Electrophys & Radiat Technol NAS Ukraine, UA-61108 Kharkov, Ukraine
来源
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY | 2012年 / 01期
关键词
D O I
暂无
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The model that allows one to generalize the notions of the multicritical and Lifshitz points is considered. The model under consideration includes the higher powers and derivatives of order parameters. Critical phenomena in such systems were studied. We assess the lower and upper critical dimensions of these systems. These calculation enable us to find the fluctuation region where the mean field theory description does not work.
引用
收藏
页码:268 / 272
页数:5
相关论文
共 11 条
[1]  
[Anonymous], 1981, Structural Phase Transitions
[2]   Spatial modulation of order parameters and critical dimensions [J].
Babich, A. V. ;
Berezovsky, S. V. ;
Klepikov, V. F. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2008, 22 (07) :851-857
[3]   CRITICAL DIMENSIONS OF SYSTEMS WITH JOINT MULTICRITICAL AND LIFSHITZ-POINT-LIKE BEHAVIOR [J].
Babich, Artem V. ;
Kitcenko, Lesya N. ;
Klepikov, Vyacheslav F. .
MODERN PHYSICS LETTERS B, 2011, 25 (22) :1839-1845
[4]   Multidimensional world, inflation, and modern acceleration [J].
Bronnikov, K. A. ;
Rubin, S. G. ;
Svadkovsky, I. V. .
PHYSICAL REVIEW D, 2010, 81 (08)
[5]  
Fushchych WI., 1993, Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics
[6]  
Ma Shang-keng, 1976, MODERN THEORY CRITIC, P299
[7]   Vector order parameter in general relativity: Covariant equations [J].
Meierovich, Boris E. .
PHYSICAL REVIEW D, 2010, 82 (02)
[8]   The theory of spatiotemporal pattern in nonequilibrium systems [J].
Olemskoi, AI ;
Klepikov, VF .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 338 (06) :571-677
[9]  
Patashinskii A.Z., 1979, FLUCTUATION THEORY P, P524
[10]  
Polyakov A.M., 1987, GAUGE FIELDS STRINGS, P327