The management and containment of self-similar rogue waves in the inhomogeneous nonlinear Schrodinger equation

被引:114
作者
Dai, Chao-Qing [1 ,2 ]
Wang, Yue-Yue [1 ]
Tian, Qing [2 ]
Zhang, Jie-Fang [2 ,3 ]
机构
[1] Zhejiang A&F Univ, Sch Sci, Linan 311300, Zhejiang, Peoples R China
[2] Suzhou Univ, Sch Phys Sci & Technol, Suzhou 215006, Jiangsu, Peoples R China
[3] Zhejiang Univ Media & Commun, Hangzhou 310018, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear Schrodinger equation; Rogue wave; Management and containment; MODULATION INSTABILITY; SOLITON; FIBER;
D O I
10.1016/j.aop.2011.11.016
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present, analytically, self-similar rogue wave solutions (rational solutions) of the inhomogeneous nonlinear Schrodinger equation (NLSE) via a similarity transformation connected with the standard NLSE. Then we discuss the propagation behaviors of controllable rogue waves under dispersion and nonlinearity management. In an exponentially dispersion-decreasing fiber, the postponement, annihilation and sustainment of self-similar rogue waves are modulated by the exponential parameter a. Finally, we investigate the nonlinear tunneling effect for self-similar rogue waves. Results show that rogue waves can tunnel through the nonlinear barrier or well with increasing, unchanged or decreasing amplitudes via the modulation of the ratio of the amplitudes of rogue waves to the barrier or well height. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:512 / 521
页数:10
相关论文
共 51 条
[21]   Optical rogue wave statistics in laser filamentation [J].
Kasparian, Jerome ;
Bejot, Pierre ;
Wolf, Jean-Pierre ;
Dudley, John M. .
OPTICS EXPRESS, 2009, 17 (14) :12070-12075
[22]  
Kharif C, 2009, ADV GEOPHYS ENV MECH, P1, DOI 10.1007/978-3-540-88419-4_1
[23]   Soliton spectral tunnelling in photonic crystal fibre with sub-wavelength core defect [J].
Kibler, B. ;
Lacourt, P.-A. ;
Courvoisier, E. ;
Dudley, J. M. .
ELECTRONICS LETTERS, 2007, 43 (18) :967-968
[24]   The Peregrine soliton in nonlinear fibre optics [J].
Kibler, B. ;
Fatome, J. ;
Finot, C. ;
Millot, G. ;
Dias, F. ;
Genty, G. ;
Akhmediev, N. ;
Dudley, J. M. .
NATURE PHYSICS, 2010, 6 (10) :790-795
[25]   Rogue waves, rational solitons and wave turbulence theory [J].
Kibler, Bertrand ;
Hammani, Kamal ;
Michel, Claire ;
Finot, Christophe ;
Picozzi, Antonio .
PHYSICS LETTERS A, 2011, 375 (35) :3149-3155
[26]   Exact solutions of the generalized nonlinear Schrodinger equation with distributed coefficients [J].
Kruglov, VI ;
Peacock, AC ;
Harvey, JD .
PHYSICAL REVIEW E, 2005, 71 (05)
[27]   Exact self-similar solutions of the generalized nonlinear schrodinger equation with distributed coefficients [J].
Kruglov, VI ;
Peacock, AC ;
Harvey, JD .
PHYSICAL REVIEW LETTERS, 2003, 90 (11) :4
[28]   Interaction of a nonlinear spin-wave and magnetic soliton in a uniaxial anisotropic ferromagnet [J].
Li, Zai-Dong ;
Li, Qlu-Yan ;
He, Peng-Bin ;
Bai, Zhan-Guo ;
Sun, Yubao .
ANNALS OF PHYSICS, 2007, 322 (12) :2945-2957
[29]   Bright and dark solitons in the normal dispersion regime of inhomogeneous optical fibers: Soliton interaction and soliton control [J].
Liu, Wen-Jun ;
Tian, Bo ;
Xu, Tao ;
Sun, Kun ;
Jiang, Yan .
ANNALS OF PHYSICS, 2010, 325 (08) :1633-1643
[30]   Modulation instability and solitons on a cw background in inhomogeneous optical fiber media [J].
Lu, L ;
Li, ZH ;
Li, SQ ;
Zhou, GS .
OPTICS COMMUNICATIONS, 2004, 234 (1-6) :169-176