The management and containment of self-similar rogue waves in the inhomogeneous nonlinear Schrodinger equation

被引:114
作者
Dai, Chao-Qing [1 ,2 ]
Wang, Yue-Yue [1 ]
Tian, Qing [2 ]
Zhang, Jie-Fang [2 ,3 ]
机构
[1] Zhejiang A&F Univ, Sch Sci, Linan 311300, Zhejiang, Peoples R China
[2] Suzhou Univ, Sch Phys Sci & Technol, Suzhou 215006, Jiangsu, Peoples R China
[3] Zhejiang Univ Media & Commun, Hangzhou 310018, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear Schrodinger equation; Rogue wave; Management and containment; MODULATION INSTABILITY; SOLITON; FIBER;
D O I
10.1016/j.aop.2011.11.016
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present, analytically, self-similar rogue wave solutions (rational solutions) of the inhomogeneous nonlinear Schrodinger equation (NLSE) via a similarity transformation connected with the standard NLSE. Then we discuss the propagation behaviors of controllable rogue waves under dispersion and nonlinearity management. In an exponentially dispersion-decreasing fiber, the postponement, annihilation and sustainment of self-similar rogue waves are modulated by the exponential parameter a. Finally, we investigate the nonlinear tunneling effect for self-similar rogue waves. Results show that rogue waves can tunnel through the nonlinear barrier or well with increasing, unchanged or decreasing amplitudes via the modulation of the ratio of the amplitudes of rogue waves to the barrier or well height. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:512 / 521
页数:10
相关论文
共 51 条
[1]   How to excite a rogue wave [J].
Akhmediev, N. ;
Soto-Crespo, J. M. ;
Ankiewicz, A. .
PHYSICAL REVIEW A, 2009, 80 (04)
[2]   Waves that appear from nowhere and disappear without a trace [J].
Akhmediev, N. ;
Ankiewicz, A. ;
Taki, M. .
PHYSICS LETTERS A, 2009, 373 (06) :675-678
[3]   Rogue waves and rational solutions of the nonlinear Schroumldinger equation [J].
Akhmediev, Nail ;
Ankiewicz, Adrian ;
Soto-Crespo, J. M. .
PHYSICAL REVIEW E, 2009, 80 (02)
[4]   MODULATION INSTABILITY AND PERIODIC-SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION [J].
AKHMEDIEV, NN ;
KORNEEV, VI .
THEORETICAL AND MATHEMATICAL PHYSICS, 1986, 69 (02) :1089-1093
[5]   Class of solitary wave solutions of the one-dimensional Gross-Pitaevskii equation [J].
Atre, Rajneesh ;
Panigrahi, Prasanta K. ;
Agarwal, G. S. .
PHYSICAL REVIEW E, 2006, 73 (05)
[6]   Enigmas of optical and matter-wave soliton nonlinear tunneling [J].
Belyaeva, T. L. ;
Serkin, V. N. ;
Hernandez-Tenorio, C. ;
Garcia-Santibanez, F. .
JOURNAL OF MODERN OPTICS, 2010, 57 (12) :1087-1099
[7]  
Broad W. J., 2006, NY TIMES
[8]   Rogue Wave Observation in a Water Wave Tank [J].
Chabchoub, A. ;
Hoffmann, N. P. ;
Akhmediev, N. .
PHYSICAL REVIEW LETTERS, 2011, 106 (20)
[9]   Quasi-two-dimensional Bose-Einstein condensates with spatially modulated cubic-quintic nonlinearities [J].
Dai, Chao-Qing ;
Wang, Deng-Shan ;
Wang, Liang-Liang ;
Zhang, Jie-Fang ;
Liu, W. M. .
ANNALS OF PHYSICS, 2011, 326 (09) :2356-2368
[10]   Spatial solitons with the odd and even symmetries in (2+1)-dimensional spatially inhomogeneous cubic-quintic nonlinear media with transverse W-shaped modulation [J].
Dai, Chao-Qing ;
Chen, Rui-Pin ;
Zhou, Guo-Quan .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2011, 44 (14)