SUPERPIXEL-LEVEL SPARSE REPRESENTATION-BASED CLASSIFICATION FOR HYPERSPECTRAL IMAGERY

被引:7
|
作者
Jia, Sen [1 ]
Deng, Bin [1 ]
Jia, Xiuping [2 ]
机构
[1] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R China
[2] Univ New South Wales, Sch Engn & Informat Technol, Canberra, ACT, Australia
来源
2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2016年
基金
中国国家自然科学基金;
关键词
Hyperspectral imagery; superpixel; sparse representation-based classification; RECOGNITION;
D O I
10.1109/IGARSS.2016.7729854
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Sparse representation-based classification (SRC) assigns a test sample to the class with minimal representation error via a sparse linear combination of all the training samples, which has successfully been applied to hyperspectral imagery (HSI). Meanwhile, spatial information, that means the adjacent pixels belong to the same class with a high probability, is a valuable complement to the spectral information. In this paper, we propose an efficient method for HSI classification by using superpixel based sparse representation-based classification (SP-SRC). One superpixel can be regarded as a small region consisting of a number of pixels with similar spectral characteristics. The novel method utilizes superpixel to exploit spatial information which can greatly improve classification accuracy. Specifically, SRC is firstly used to classifier the HSI. Then an efficient segmentation algorithm is adopted to divide the HSI into disjoint superpixels. Finally, each superpixel is used to fuse the results of the SRC classifier. Experimental results on the widely-used Indian Pines hyperspectral imagery have shown that the proposed SP-SRC approach could achieve better performance than the pixel-wise SRC method.
引用
收藏
页码:3302 / 3305
页数:4
相关论文
共 50 条
  • [21] Sparse representation-based classification of mysticete calls
    Guilment, Thomas
    Socheleau, Francois-Xavier
    Pastor, Dominique
    Vallez, Simon
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2018, 144 (03) : 1550 - 1563
  • [22] SUPERPIXEL-BASED CLASSIFICATION OF HYPERSPECTRAL DATA USING SPARSE REPRESENTATION AND CONDITIONAL RANDOM FIELDS
    Roscher, Ribana
    Waske, Bjoern
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 3674 - 3677
  • [23] A Symmetric Sparse Representation Based Band Selection Method for Hyperspectral Imagery Classification
    Sun, Weiwei
    Jiang, Man
    Li, Weiyue
    Liu, Yinnian
    REMOTE SENSING, 2016, 8 (03)
  • [24] Superpixel based Feature Specific Sparse Representation for Spectral-Spatial Classification of Hyperspectral Images
    Sun, He
    Ren, Jinchang
    Zhao, Huimin
    Yan, Yijun
    Zabalza, Jaime
    Marshall, Stephen
    REMOTE SENSING, 2019, 11 (05)
  • [25] Superpixel Guided Deep-Sparse-Representation Learning for Hyperspectral Image Classification
    Fan, Jiayuan
    Chen, Tao
    Lu, Shijian
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2018, 28 (11) : 3163 - 3173
  • [26] A Sparse Representation-Based Binary Hypothesis Model for Target Detection in Hyperspectral Images
    Zhang, Yuxiang
    Du, Bo
    Zhang, Liangpei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (03): : 1346 - 1354
  • [27] Sparsity embedding projections for sparse representation-based classification
    Du, Haishun
    Hu, Qingpu
    Jiang, Manman
    Zhang, Fan
    OPTIK, 2016, 127 (07): : 3605 - 3613
  • [28] DECISION FUSION OF PIXEL-LEVEL AND SUPERPIXEL-LEVEL HYPERSPECTRAL IMAGE CLASSIFIERS
    Lu, Ting
    Li, Shutao
    Fang, Leyuan
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 1524 - 1527
  • [29] Sparse Representation for Target Detection in Hyperspectral Imagery
    Chen, Yi
    Nasrabadi, Nasser M.
    Tran, Trac D.
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2011, 5 (03) : 629 - 640
  • [30] A Multiscale Superpixel-Level Group Clustering Framework for Hyperspectral Band Selection
    Jia, Sen
    Yuan, Yue
    Li, Nanying
    Liao, Jianhui
    Huang, Qiang
    Jia, Xiuping
    Xu, Meng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60