Homoclinic solutions of discrete p-Laplacian equations containing both advance and retardation

被引:1
作者
Mei, Peng [1 ,2 ]
Zhou, Zhan [1 ,2 ]
Chen, Yuming [3 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[2] Guangzhou Univ, Guangzhou Ctr Appl Math, Guangzhou 510006, Peoples R China
[3] Wilfrid Laurier Univ, Dept Math, Waterloo, ON N2L 3C5, Canada
来源
ELECTRONIC RESEARCH ARCHIVE | 2022年 / 30卷 / 06期
基金
中国国家自然科学基金;
关键词
homoclinic solution; p; -Laplacian; mixed nonlinearity; critical point theory; SUBHARMONIC SOLUTIONS; DIFFERENCE-EQUATIONS; EXISTENCE; SYSTEMS; ORBITS;
D O I
10.3934/era.2022112
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a 2mth-order nonlinear p-Laplacian difference equation containing both advance and retardation. Using the critical point theory, we establish some new and weaker criteria on the existence of homoclinic solutions with mixed nonlinearities.
引用
收藏
页码:2205 / 2219
页数:15
相关论文
共 19 条
[11]   SOME DIFFERENTIAL-DIFFERENCE EQUATIONS CONTAINING BOTH ADVANCE AND RETARDATION [J].
SCHULMAN, LS .
JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (03) :295-298
[12]  
Shi HP, 2016, RACSAM REV R ACAD A, V110, P65, DOI 10.1007/s13398-015-0221-y
[13]   Solitary waves with prescribed speed on infinite lattices [J].
Smets, D ;
Willem, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 149 (01) :266-275
[14]   ON HOMOCLINIC SOLUTIONS FOR A SECOND ORDER DIFFERENCE EQUATION WITH p-LAPLACIAN [J].
Steglinski, Robert .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (01) :487-492
[15]  
Stuart CA., 2011, COMMUN APPL ANAL, V15, P569
[16]   Infinitely Many Homoclinic Solutions for Second Order Nonlinear Difference Equations with P-Laplacian [J].
Sun, Guowei ;
Mai, Ali .
SCIENTIFIC WORLD JOURNAL, 2014,
[17]   One discrete dynamical model on the Wolbachia infection frequency in mosquito populations [J].
Zheng, Bo ;
Li, Jia ;
Yu, Jianshe .
SCIENCE CHINA-MATHEMATICS, 2022, 65 (08) :1749-1764
[18]   Infinitely many positive solutions for a discrete two point nonlinear boundary value problem with φc-Laplacian [J].
Zhou, Zhan ;
Ling, Jiaoxiu .
APPLIED MATHEMATICS LETTERS, 2019, 91 :28-34
[19]   Multiplicity results of breathers for the discrete nonlinear Schrodinger equations with unbounded potentials [J].
Zhou Zhan ;
Ma DeFang .
SCIENCE CHINA-MATHEMATICS, 2015, 58 (04) :781-790