Formation and suppression of hydrogen blisters in tunnelling oxide passivating contact for crystalline silicon solar cells

被引:38
作者
Choi, Sungjin [1 ]
Kwon, Ohmin [2 ]
Min, Kwan Hong [1 ,3 ]
Jeong, Myeong Sang [1 ,3 ]
Jeong, Kyung Taek [1 ]
Kang, Min Gu [1 ]
Park, Sungeun [1 ]
Hong, Kuen Kee [4 ]
Song, Hee-eun [1 ]
Kim, Ka-Hyun [2 ,5 ]
机构
[1] Korea Inst Energy Res, Photovolta Lab, Daejeon 34129, South Korea
[2] Chungbuk Natl Univ, Dept Phys, Cheongju 28644, Chungbuk, South Korea
[3] Korea Univ, Dept Mat Sci & Engn, Seoul 02841, South Korea
[4] Shinsung E&G Co Ltd, R&D Ctr, Solar Cell R&D Team, Seongnam 13543, South Korea
[5] Res Inst Nanoscale Sci & Technol, Cheongju 28644, Chungbuk, South Korea
基金
新加坡国家研究基金会;
关键词
SI-H; INTERFACE PASSIVATION; REAR CONTACTS; TEMPERATURE; DEPOSITION; EVOLUTION; DIFFUSION; FILMS;
D O I
10.1038/s41598-020-66801-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The formation of hydrogen blisters in the fabrication of tunnelling oxide passivating contact (TOPCon) solar cells critically degrades passivation. In this study, we investigated the formation mechanism of blisters during the fabrication of TOPCons for crystalline silicon solar cells and the suppression of such blisters. We tested the effects of annealing temperature and duration, surface roughness, and deposition temperature on the blister formation, which was suppressed in two ways. First, TOPCon fabrication on a rough surface enhanced adhesion force, resulting in reduced blister formation after thermal annealing. Second, deposition or annealing at higher temperatures resulted in the reduction of hydrogen in the film. A sample fabricated through low-pressure chemical vapor deposition at 580 degrees C was free from silicon-hydrogen bonds and blisters after the TOPCon structure was annealed. Remarkably, samples after plasma-enhanced chemical vapor deposition at 300, 370, and 450 degrees C were already blistered in the as-deposited state, despite low hydrogen contents. Analysis of the hydrogen incorporation, microstructure, and deposition mechanism indicate that in plasma-enhanced chemical vapor deposition (PECVD) deposition, although the increase of substrate temperature reduces the hydrogen content, it risks the increase of porosity and molecular-hydrogen trapping, resulting in even more severe blistering.
引用
收藏
页数:14
相关论文
共 37 条
  • [1] Effects of plasma processing on the microstructural properties of silicon powders
    Bertran, E.
    Costa, J.
    Sardin, G.
    Campmany, J.
    Andujar, J. L.
    Canillas, A.
    [J]. PLASMA SOURCES SCIENCE & TECHNOLOGY, 1994, 3 (03) : 348 - 354
  • [2] Voids in hydrogenated amorphous silicon materials
    Beyer, W.
    Hilgers, W.
    Prunici, P.
    Lennartz, D.
    [J]. JOURNAL OF NON-CRYSTALLINE SOLIDS, 2012, 358 (17) : 2023 - 2026
  • [3] 24.58% total area efficiency of screen-printed, large area industrial silicon solar cells with the tunnel oxide passivated contacts (i-TOPCon) design
    Chen, Daming
    Chen, Yifeng
    Wang, Zigang
    Gong, Jian
    Liu, Chengfa
    Zou, Yang
    He, Yu
    Wang, Yao
    Yuan, Ling
    Lin, Wenjie
    Xia, Rui
    Yin, Li
    Zhang, Xueling
    Xu, Guanchao
    Yang, Yang
    Shen, Hui
    Feng, Zhiqiang
    Altermatt, Pietro P.
    Verlinden, Pierre J.
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2020, 206
  • [4] Structural evolution of tunneling oxide passivating contact upon thermal annealing
    Choi, Sungjin
    Min, Kwan Hong
    Jeong, Myeong Sang
    Lee, Jeong In
    Kang, Min Gu
    Song, Hee-Eun
    Kang, Yoonmook
    Lee, Hae-Seok
    Kim, Donghwan
    Kim, Ka-Hyun
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [5] GENERATION 3: IMPROVED PERFORMANCE AT LOWER COST
    Cousins, Peter J.
    Smith, David D.
    Luan, Hsin-Chiao
    Manning, Jane
    Dennis, Tim D.
    Waldhauer, Ann
    Wilson, Karen E.
    Harley, Gabriel
    Mulligan, William P.
    [J]. 35TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, 2010, : 275 - 278
  • [6] Thermal dehydrogenation of amorphous silicon deposited on c-Si: Effect of the substrate temperature during deposition
    de Calheiros Velozo, A.
    Lavareda, G.
    Nunes de Carvalho, C.
    Amaral, A.
    [J]. PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 9, NO 10-11, 2012, 9 (10-11): : 2198 - 2202
  • [7] Structure of PECVD Si:H films for solar cell applications
    Edelman, F
    Chack, A
    Weil, R
    Beserman, R
    Khait, YL
    Werner, P
    Rech, B
    Roschek, T
    Carius, R
    Wagner, H
    Beyer, W
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2003, 77 (02) : 125 - 143
  • [8] Molecular hydrogen in α-Si:H
    Fedders, PA
    Leopold, DJ
    Chan, PH
    Borzi, R
    Norberg, RE
    [J]. PHYSICAL REVIEW LETTERS, 2000, 85 (02) : 401 - 404
  • [9] The application of poly-Si/SiOx contacts as passivated top/rear contacts in Si solar
    Feldmann, Frank
    Reichel, Christian
    Mueller, Ralph
    Hermle, Martin
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 159 : 265 - 271
  • [10] Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics
    Feldmann, Frank
    Bivour, Martin
    Reichel, Christian
    Hermle, Martin
    Glunz, Stefan W.
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 120 : 270 - 274