Microaneurysm Detection with Radon Transform-based Classification on Retina Images

被引:0
作者
Giancardo, L. [1 ,2 ]
Meriaudeau, F. [1 ]
Karnowski, T. P. [2 ]
Li, Y. [3 ]
Tobin, K. W., Jr. [2 ]
Chaum, E. [3 ]
机构
[1] Univ Burgundy, F-71200 Le Creuso, France
[2] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[3] Univ Tennessee, Hlth Sci Ctr, Memphis, TN 38163 USA
来源
2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC) | 2011年
关键词
AUTOMATIC DETECTION;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The creation of an automatic diabetic retinopathy screening system using retina cameras is currently receiving considerable interest in the medical imaging community. The detection of microaneurysms is a key element in this effort. In this work, we propose a new microaneurysms segmentation technique based on a novel application of the radon transform, which is able to identify these lesions without any previous knowledge of the retina morphological features and with minimal image preprocessing. The algorithm has been evaluated on the Retinopathy Online Challenge public dataset, and its performance compares with the best current techniques. The performance is particularly good at low false positive ratios, which makes it an ideal candidate for diabetic retinopathy screening systems.
引用
收藏
页码:5939 / 5942
页数:4
相关论文
共 10 条
  • [1] [Anonymous], 2011, National diabetes fact sheet: National estimates and general information on diabetes and prediabetes in the United States
  • [2] Antal B., 2010, ENSEMBLE BASED SYSTE
  • [3] BAUDOIN CE, 1984, REV EPIDEMIOL SANTE, V32, P254
  • [4] LIBSVM: A Library for Support Vector Machines
    Chang, Chih-Chung
    Lin, Chih-Jen
    [J]. ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
  • [5] A comparison of computer based classification methods applied to the detection of microaneurysms in ophthalmic fluorescein angiograms
    Frame, AJ
    Undrill, PE
    Cree, MJ
    Olson, JA
    McHardy, KC
    Sharp, PF
    Forrester, JV
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 1998, 28 (03) : 225 - 238
  • [6] Giancardo L., 2010, NEW DEV BIOMEDICAL E, P201
  • [7] Microaneurysms Detection with the Radon Cliff Operator in Retinal Fundus Images.
    Giancardo, Luca
    Meriaudeau, Fabrice
    Karnowski, Thomas P.
    Tobin, Kenneth W.
    Li, Yaqin
    Chaum, Edward
    [J]. MEDICAL IMAGING 2010: IMAGE PROCESSING, 2010, 7623
  • [8] Automatic detection of red lesions in digital color fundus photographs
    Niemeijer, M
    van Ginneken, B
    Staal, J
    Suttorp-Schulten, MSA
    Abràmoff, MD
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2005, 24 (05) : 584 - 592
  • [9] Retinopathy Online Challenge: Automatic Detection of Microaneurysms in Digital Color Fundus Photographs
    Niemeijer, Meindert
    van Ginneken, Bram
    Cree, Michael J.
    Mizutani, Atsushi
    Quellec, Gwenole
    Sanchez, Clara I.
    Zhang, Bob
    Hornero, Roberto
    Lamard, Mathieu
    Muramatsu, Chisako
    Wu, Xiangqian
    Cazuguel, Guy
    You, Jane
    Mayo, Agustin
    Li, Qin
    Hatanaka, Yuji
    Cochener, Beatrice
    Roux, Christian
    Karray, Fakhri
    Garcia, Maria
    Fujita, Hiroshi
    Abramoff, Michael D.
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2010, 29 (01) : 185 - 195
  • [10] Image-processing strategy for the segmentation and quantification of microaneurysms in fluorescein angiograms of the ocular fundus
    Spencer, T
    Olson, JA
    McHardy, KC
    Sharp, PF
    Forrester, JV
    [J]. COMPUTERS AND BIOMEDICAL RESEARCH, 1996, 29 (04): : 284 - 302