Gotzmann monomial ideals

被引:5
|
作者
Murai, Satoshi [1 ]
机构
[1] Osaka Univ, Dept Pure & Appl Math, Grad Sch Informat Sci & Technol, Osaka 5600043, Japan
关键词
D O I
10.1215/ijm/1258131105
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Gotzmann monomial ideal of a polynomial ring is a monomial ideal which is generated in one degree and which satisfies Gotzmann's persistence theorem. Let R = K[x(1),..., x(n)] denote the polynomial ring in n variables over a field K and M-d the set of monomials of R of degree d. A subset V subset of M-d is said to be a Gotzmann subset if the ideal generated by V is a Gotzmann monomial ideal. In the present paper, we find all integers a > 0 such that every Gotzmann subset V C Md with vertical bar V vertical bar = a is lexsegment (up to the permutations of the variables). In addition, we classify all Gotzmann subsets of K [x(1), x(2), x(3)].
引用
收藏
页码:843 / 852
页数:10
相关论文
共 50 条
  • [31] Random monomial ideals
    De Loera, Jesus A.
    Petrovic, Sonja
    Silverstein, Lily
    Stasi, Despina
    Wilburne, Dane
    JOURNAL OF ALGEBRA, 2019, 519 : 440 - 473
  • [32] SPLITTINGS OF MONOMIAL IDEALS
    Francisco, Christopher A.
    Ha, Huy Tai
    Van Tuyl, Adam
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (10) : 3271 - 3282
  • [33] A note on monomial ideals
    Margherita Barile
    Archiv der Mathematik, 2006, 87 : 516 - 521
  • [34] Lifting monomial ideals
    Migliore, J
    Nagel, U
    COMMUNICATIONS IN ALGEBRA, 2000, 28 (12) : 5679 - 5701
  • [35] ON A CLASS OF MONOMIAL IDEALS
    Borna, Keivan
    Jafari, Raheleh
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2013, 87 (03) : 514 - 526
  • [36] NORMALITY OF MONOMIAL IDEALS
    Al-Ayyoub, Ibrahim
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2009, 39 (01) : 1 - 9
  • [37] On Monomial Golod Ideals
    Dao, Hailong
    De Stefani, Alessandro
    ACTA MATHEMATICA VIETNAMICA, 2022, 47 (01) : 359 - 367
  • [38] Liaison of monomial ideals
    Huneke, Craig
    Ulrich, Bernd
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2007, 39 : 384 - 392
  • [39] MONOMIAL DIFFERENCE IDEALS
    Wang, Jie
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (04) : 1481 - 1496
  • [40] ON COMPLETE MONOMIAL IDEALS
    Gimenez, Philippe
    Simis, Aron
    Vasconcelos, Wolmer V.
    Villarreal, Rafael H.
    JOURNAL OF COMMUTATIVE ALGEBRA, 2016, 8 (02) : 207 - 226