Approximation in weighted Bergman spaces and Hankel operators on strongly pseudoconvex domains

被引:2
|
作者
Gao, Jinshou [1 ]
Hu, Zhangjian [2 ]
机构
[1] Fujian Normal Univ, Coll Math & Informat, Fuzhou 350117, Fujian, Peoples R China
[2] Huzhou Univ, Dept Math, Huzhou 313000, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Strongly pseudoconvex domains; Weighted Bergman spaces; Hankel operators; SZEGO PROJECTIONS; CARLESON MEASURES; DUALITY; BMO;
D O I
10.1007/s00209-020-02566-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose D is a bounded strongly pseudoconvex domain in C-n with smooth boundary, and let rho be its defining function. For 1 < p < infinity and alpha > -1, we show that the weighted Bergman projection P-alpha is bounded on L-P (D, vertical bar rho vertical bar(alpha) dV). With non-isotropic estimates for (partial derivative) over bar and Stein's theorem on non-tangential maximal operators, we prove that bounded holomorphic functions are dense in the weighted Bergman space A(P) (D, vertical bar rho vertical bar(alpha) dV), and hence Hankel operators can be well defined on these spaces. For all 1 < p, q < infinity we characterize bounded (resp. compact) Hankel operators from p-th weighted Bergman space to q-th weighted Lebesgue space with possibly different weights. As a consequence, we generalize the main results in Pau et al. (Indiana Univ Math J 65:1639-1673, 2016) and resolve a question posed in Lv and Zhu (Integr Equ Oper Theory, 2019).
引用
收藏
页码:1483 / 1505
页数:23
相关论文
共 50 条
  • [31] Hankel Operators on Bergman Spaces of Annulus Induced by Regular Weights
    Yang, Li Hong
    Wang, Xiao Feng
    Xia, Jin
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2021, 37 (05) : 775 - 804
  • [32] Estimates of the Lp Norms of the Bergman Projection on Strongly Pseudoconvex Domains
    Cuckovic, Zeljko
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2017, 88 (03) : 331 - 338
  • [33] Reproducing Kernel Thesis of Hankel Operators on Weighted Hardy Spaces
    Colovic, Ana
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2025, 97 (02)
  • [34] Compactness of Hankel Operators with Symbols Continuous on the Closure of Pseudoconvex Domains
    Timothy G. Clos
    Mehmet Çelik
    Sönmez Şahutoğlu
    Integral Equations and Operator Theory, 2018, 90
  • [35] Compactness of Hankel operators and analytic discs in the boundary of pseudoconvex domains
    Cuckovic, Zeljko
    Sahutoglu, Soenmez
    JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (11) : 3730 - 3742
  • [36] Compactness of Hankel Operators with Symbols Continuous on the Closure of Pseudoconvex Domains
    Clos, Timothy G.
    Celik, Mehmet
    Sahutoglu, Sonmez
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2018, 90 (06)
  • [37] Schatten class Hankel operators on exponential Bergman spaces
    Zhicheng Zeng
    Xiaofeng Wang
    Zhangjian Hu
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117
  • [38] A Class of Operators on Weighted Bergman Spaces
    Kwon, Miyeon
    Wu, Zhijian
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2008, 62 (03) : 411 - 417
  • [39] A Class of Operators on Weighted Bergman Spaces
    Miyeon Kwon
    Zhijian Wu
    Integral Equations and Operator Theory, 2008, 62 : 411 - 417
  • [40] Schatten class Hankel operators on exponential Bergman spaces
    Zeng, Zhicheng
    Wang, Xiaofeng
    Hu, Zhangjian
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2023, 117 (01)