New point-like sources and a conducting surface in Maxwell-Chern-Simons electrodynamics

被引:11
|
作者
Borges, L. H. C. [1 ]
Barone, F. E.
Ribeiro, C. C. H. [2 ]
Oliveira, H. L. [1 ]
Fernandez, R. L. [3 ]
Barone, F. A. [4 ]
机构
[1] UNESP, Campus Guaratingueta DFQ,Ave Dr Ariberto Pereira, BR-12516410 Guaratingueta, SP, Brazil
[2] Univ Sao Paulo, Inst Fis Sao Carlos, Dept Fis & Ciencia, Av Trabalhador Sao Carlense 400,Caixa Postal 369, BR-13560970 Sao Carlos, SP, Brazil
[3] Univ Fed Rio De Janeiro, Inst Fis, Av Athos Silveira Ramos,149 Ctr Tecnol,Bloco A, BR-21941972 Rio De Janeiro, RJ, Brazil
[4] Univ Fed Itajuba, IFQ, Av BPS 1303,Caixa Postal 50, BR-37500903 Itajuba, MG, Brazil
来源
EUROPEAN PHYSICAL JOURNAL C | 2020年 / 80卷 / 03期
基金
巴西圣保罗研究基金会;
关键词
VIOLATION; BOUNDARY; GAUGE;
D O I
10.1140/epjc/s10052-020-7775-3
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We investigate some aspects of the Maxwell-Chern-Simons electrodynamics focusing on physical effects produced by the presence of stationary sources and a perfectly conducting plate (mirror). Specifically, in addition to point charges, we propose two new types of point-like sources called topological source and Dirac point, and we also consider physical effects in various configurations that involve them. We show that the Dirac point is the source of the vortex field configurations. The propagator of the gauge field due to the presence of a conducting plate and the interaction forces between the plate and point-like sources are computed. It is shown that the image method is valid for the point-like charges as well as for Dirac points. For the topological source we show that the image method is not valid and the symmetry of spatial refection on the mirror is broken. In all setups considered, it is shown that the topological source leads to the emergence of torques.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] New point-like sources and a conducting surface in Maxwell–Chern–Simons electrodynamics
    L. H. C. Borges
    F. E. Barone
    C. C. H. Ribeiro
    H. L. Oliveira
    R. L. Fernandez
    F. A. Barone
    The European Physical Journal C, 2020, 80
  • [2] MAXWELL-CHERN-SIMONS ELECTRODYNAMICS ON A DISK
    BALACHANDRAN, AP
    CHANDAR, L
    ERCOLESSI, E
    GOVINDARAJAN, TR
    SHANKAR, R
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1994, 9 (19): : 3417 - 3441
  • [3] SIM(1)-VSR Maxwell-Chern-Simons electrodynamics
    Bufalo, R.
    PHYSICS LETTERS B, 2016, 757 : 216 - 222
  • [4] THE FUNCTIONAL SQUEEZE OPERATOR ALGEBRA IN MAXWELL-CHERN-SIMONS ELECTRODYNAMICS
    Andrianov, A. A.
    Kolevatov, S. S.
    Soldati, R.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2015, 184 (03) : 1213 - 1223
  • [5] Chiral magnetic effect and Maxwell-Chern-Simons electrodynamics in Weyl semimetals
    Sa, Debanand
    EUROPEAN PHYSICAL JOURNAL B, 2021, 94 (01):
  • [6] Asymptotics for Maxwell-Chern-Simons multivortices
    Ricciardi, T
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 50 (08) : 1093 - 1106
  • [7] Confinement in Maxwell-Chern-Simons planar quantum electrodynamics and the 1/N approximation
    Hofmann, Christoph P.
    Raya, Alfredo
    Sanchez Madrigal, Saul
    PHYSICAL REVIEW D, 2010, 82 (09):
  • [8] Casimir effect within (3 + 1)D Maxwell-Chern-Simons electrodynamics
    V. Ch. Zhukovsky
    O. G. Kharlanov
    Moscow University Physics Bulletin, 2010, 65 : 1 - 5
  • [9] Vortices in the Maxwell-Chern-Simons theory
    Ricciardi, T
    Tarantello, G
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2000, 53 (07) : 811 - 851
  • [10] Dynamical Mass Generation and Confinement in Maxwell-Chern-Simons Planar Quantum Electrodynamics
    Sanchez Madrigal, S.
    Hofmann, C. P.
    Raya, A.
    XIV MEXICAN SCHOOL ON PARTICLES AND FIELDS, 2011, 287