On strongly symmetric skew lattices

被引:3
作者
Cvetko-Vah, Karin [1 ]
机构
[1] Univ Ljubljana, Dept Math, Fac Math & Phys, Ljubljana 1000, Slovenia
关键词
skew lattice; symmetric; strongly symmetric; cancellative; variety; BOOLEAN-ALGEBRAS; RINGS;
D O I
10.1007/s00012-011-0143-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Skew lattices are a non-commutative generalization of lattices. In the past 20 years, several varieties of skew lattices have been introduced. In the present paper we study the variety of strongly symmetric skew lattices.
引用
收藏
页码:99 / 113
页数:15
相关论文
共 18 条
  • [1] SKEW BOOLEAN-ALGEBRAS AND DISCRIMINATOR VARIETIES
    BIGNALL, RJ
    LEECH, JE
    [J]. ALGEBRA UNIVERSALIS, 1995, 33 (03) : 387 - 398
  • [2] BOOLEAN SKEW ALGEBRAS
    CORNISH, WH
    [J]. ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1980, 36 (3-4): : 281 - 291
  • [3] Skew lattices of matrices in rings
    Cvetko-Vah, K
    [J]. ALGEBRA UNIVERSALIS, 2005, 53 (04) : 471 - 479
  • [4] Internal decompositions of skew lattices
    Cvetko-Vah, Karin
    [J]. COMMUNICATIONS IN ALGEBRA, 2007, 35 (01) : 243 - 247
  • [5] A new proof of Spinks' Theorem
    Cvetko-Vah, Karin
    [J]. SEMIGROUP FORUM, 2006, 73 (02) : 267 - 272
  • [6] Cancellation in Skew Lattices
    Cvetko-Vah, Karin
    Kinyon, Michael
    Leech, Jonathan
    Spinks, Matthew
    [J]. ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2011, 28 (01): : 9 - 32
  • [7] GRATZER G, 1971, UNIVERSAL ALGEBRA 1
  • [8] Jordan P., 1949, ARCH MATH, V2, P56, DOI DOI 10.1007/BF02036754
  • [9] Laslo G., 2002, ACTA SCI MATH SZEGED, V68, P501
  • [10] SKEW BOOLEAN-ALGEBRAS
    LEECH, J
    [J]. ALGEBRA UNIVERSALIS, 1990, 27 (04) : 497 - 506