Classification of fungal and bacterial lytic polysaccharide monooxygenases

被引:71
作者
Busk, Peter K. [1 ]
Lange, Lene
机构
[1] Aalborg Univ, Dept Chem & Biosci, AC Meyers Vaenge 15, DK-2450 Copenhagen SV, Denmark
来源
BMC GENOMICS | 2015年 / 16卷
关键词
Lytic polysaccharide monooxygenases; Subfamilies; Sequence analysis; Peptide pattern recognition; Genomic annotation; CARBOHYDRATE-ACTIVE ENZYMES; GLYCOSIDE HYDROLASE FAMILY; CELLOBIOSE DEHYDROGENASE; SCHIZOPHYLLUM-COMMUNE; GENOME SEQUENCE; CELLULOSE; DEGRADATION; DATABASE; DISCOVERY; ECOLOGY;
D O I
10.1186/s12864-015-1601-6
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Lytic polysaccharide monooxygenases are important enzymes for the decomposition of recalcitrant biological macromolecules such as plant cell wall and chitin polymers. These enzymes were originally designated glycoside hydrolase family 61 and carbohydrate-binding module family 33 but are now classified as auxiliary activities 9, 10 and 11 in the CAZy database. To obtain a systematic analysis of the divergent families of lytic polysaccharide monooxygenases we used Peptide Pattern Recognition to divide 5396 protein sequences resembling enzymes from families AA9 (1828 proteins), AA10 (2799 proteins) and AA11 (769 proteins) into subfamilies. Results: The results showed that the lytic polysaccharide monooxygenases have two conserved regions identified by conserved peptides specific for each AA family. The peptides were used for in silico PCR discovery of the lytic polysaccharide monooxygenases in 79 fungal and 95 bacterial genomes. The bacterial genomes encoded 0 - 7 AA10s (average 0.6). No AA9 or AA11 were found in the bacteria. The fungal genomes encoded 0 - 40 AA9s (average 7) and 0 - 15 AA11s (average 2) and two of the fungi possessed a gene encoding a putative AA10. The AA9s were mainly found in plant cell wall-degrading asco- and basidiomycetes in agreement with the described role of AA9 enzymes. In contrast, the AA11 proteins were found in 36 of the 39 ascomycetes and in only two of the 32 basidiomycetes and their abundance did not correlate to the degradation of cellulose and hemicellulose. Conclusions: These results provides an overview of the sequence characteristics and occurrence of the divergent AA9, AA10 and AA11 families and pave the way for systematic investigations of the of lytic polysaccharide monooxygenases and for structure-function studies of these enzymes.
引用
收藏
页数:13
相关论文
共 64 条
[1]   NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions [J].
Aachmann, Finn L. ;
Sorlie, Morten ;
Skjak-Braek, Gudmund ;
Eijsink, Vincent G. H. ;
Vaaje-Kolstad, Gustav .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (46) :18779-18784
[2]   Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation [J].
Agger, Jane W. ;
Isaksen, Trine ;
Varnai, Aniko ;
Vidal-Melgosa, Silvia ;
Willats, William G. T. ;
Ludwig, Roland ;
Horn, Svein J. ;
Eijsink, Vincent G. H. ;
Westereng, Bjorge .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (17) :6287-6292
[3]  
Ainsworth GC., 1995, AINSWORTH BISBYS DIC, V8th
[4]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[5]   Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5) [J].
Aspeborg, Henrik ;
Coutinho, Pedro M. ;
Wang, Yang ;
Brumer, Harry, III ;
Henrissat, Bernard .
BMC EVOLUTIONARY BIOLOGY, 2012, 12
[6]   Mechanisms of skin adherence and invasion by dermatophytes [J].
Baldo, A. ;
Monod, M. ;
Mathy, A. ;
Cambier, L. ;
Bagut, E. T. ;
Defaweux, V. ;
Symoens, F. ;
Antoine, N. ;
Mignon, B. .
MYCOSES, 2012, 55 (03) :218-223
[7]   Nucleotide sequencing for diagnosis of sinusal infection by Schizophyllum commune, an uncommon pathogenic fungus [J].
Baron, Olivier ;
Cassaing, Sophie ;
Percodani, Josiane ;
Berry, Antoine ;
Linas, Marie-Denise ;
Fabre, Richard ;
Serrano, Elie ;
Magnaval, Jean Francois .
JOURNAL OF CLINICAL MICROBIOLOGY, 2006, 44 (08) :3042-3043
[8]   Oxidative Cleavage of Cellulose by Fungal Copper-Dependent Polysaccharide Monooxygenases [J].
Beeson, William T. ;
Phillips, Christopher M. ;
Cate, Jamie H. D. ;
Marletta, Michael A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (02) :890-892
[9]   Cello-Oligosaccharide Oxidation Reveals Differences between Two Lytic Polysaccharide Monooxygenases (Family GH61) from Podospora anserina [J].
Bey, Mathieu ;
Zhou, Simeng ;
Poidevin, Laetitia ;
Henrissat, Bernard ;
Coutinho, Pedro M. ;
Berrin, Jean-Guy ;
Sigoillot, Jean-Claude .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2013, 79 (02) :488-496
[10]   Several Genes Encoding Enzymes with the Same Activity Are Necessary for Aerobic Fungal Degradation of Cellulose in Nature [J].
Busk, Peter K. ;
Lange, Mette ;
Pilgaard, Bo ;
Lange, Lene .
PLOS ONE, 2014, 9 (12)