Efficient Dense Rigid-Body Motion Segmentation and Estimation in RGB-D Video

被引:14
|
作者
Stueckler, Joerg [1 ]
Behnke, Sven [1 ]
机构
[1] Univ Bonn, Comp Sci Inst 6, D-53113 Bonn, Germany
关键词
Motion segmentation; Rigid multi-body registration; Multibody structure-from-motion; FLOW;
D O I
10.1007/s11263-014-0796-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Motion is a fundamental grouping cue in video. Many current approaches to motion segmentation in monocular or stereo image sequences rely on sparse interest points or are dense but computationally demanding. We propose an efficient expectation-maximization (EM) framework for dense 3D segmentation of moving rigid parts in RGB-D video. Our approach segments images into pixel regions that undergo coherent 3D rigid-body motion. Our formulation treats background and foreground objects equally and poses no further assumptions on the motion of the camera or the objects than rigidness. While our EM-formulation is not restricted to a specific image representation, we supplement it with efficient image representation and registration for rapid segmentation of RGB-D video. In experiments, we demonstrate that our approach recovers segmentation and 3D motion at good precision.
引用
收藏
页码:233 / 245
页数:13
相关论文
共 42 条
  • [1] Efficient Dense Rigid-Body Motion Segmentation and Estimation in RGB-D Video
    Jörg Stückler
    Sven Behnke
    International Journal of Computer Vision, 2015, 113 : 233 - 245
  • [2] Motion Segmentation based Robust RGB-D SLAM
    Wang, Youbing
    Huang, Shoudong
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 3122 - 3127
  • [3] Randomized Voting-Based Rigid-Body Motion Segmentation
    Jung, Heechul
    Ju, Jeongwoo
    Kim, Junmo
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (03) : 698 - 713
  • [4] Towards Dense Moving Object Segmentation based Robust Dense RGB-D SLAM in Dynamic Scenarios
    Wang, Youbing
    Huang, Shoudong
    2014 13TH INTERNATIONAL CONFERENCE ON CONTROL AUTOMATION ROBOTICS & VISION (ICARCV), 2014, : 1841 - 1846
  • [5] Motion Segmentation of RGB-D Sequences: Combining Semantic and Motion Information Using Statistical Inference
    Muthu, Sundaram
    Tennakoon, Ruwan
    Rathnayake, Tharindu
    Hoseinnezhad, Reza
    Suter, David
    Bab-Hadiashar, Alireza
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 5557 - 5570
  • [6] Configurable Embodied Data Generation for Class-Agnostic RGB-D Video Segmentation
    Opipari, Anthony
    Krishnan, Aravindhan K.
    Gayaka, Shreekant
    Sun, Min
    Kuo, Cheng-Hao
    Sen, Arnie
    Jenkins, Odest Chadwicke
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (12): : 11409 - 11416
  • [7] Multi-body ICP: Motion Segmentation of Rigid Objects on Dense Point Clouds
    Kim, Youngji
    Lim, Hwasup
    Ahn, Sang Chul
    2015 12TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS AND AMBIENT INTELLIGENCE (URAI), 2015, : 532 - 536
  • [8] Nonparametric Statistical and Clustering Based RGB-D Dense Visual Odometry in a Dynamic Environment
    Zhou, Wugen
    Peng, Xiaodong
    Wang, Haijiao
    Liu, Bo
    3D RESEARCH, 2019, 10 (02):
  • [9] Robust and Efficient RGB-D SLAM in Dynamic Environments
    Yang, Xin
    Yuan, Zikang
    Zhu, Dongfu
    Chi, Cheng
    Li, Kun
    Liao, Chunyuan
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 4208 - 4219
  • [10] Linearized Formulation for Fluid-Structure-Interaction for Rigid-Body Motion
    Negi, Prabal S.
    Hanifi, Ardeshir
    Henningson, Dan S.
    IUTAM LAMINAR-TURBULENT TRANSITION, 2022, 38 : 459 - 468