MODELING OF DYNAMICAL SYSTEMS THROUGH MACHINE LEARNING

被引:0
作者
Rajendra, P. [1 ]
Naidu, T. Gunavardhana [2 ]
Brahmajirao, V. [3 ]
机构
[1] CMR Inst Technol, Dept Math, Bengaluru, Karnataka, India
[2] Aditya Inst Technol & Management, Dept Phys, Srikakulam, Andhra Pradesh, India
[3] DSR Fdn, Sch Biotechnol MGNIRSA, Hyderabad, Telangana, India
来源
ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES | 2021年 / 20卷 / 11期
关键词
dynamical systems; machine learning; dimensionality reduction; dynamic mode decomposition; DECOMPOSITION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This review presents the key challenges of discovering dynamics from data and finding data-driven representations that make nonlinear systems amenable to linear analysis. Data-driven models drive to discover the governing equations and give laws of physics. The identification of dynamical systems through machine learning techniques succeeds in inferring physical systems. The two chief challenges are nonlinear dynamics and unknown or partially known dynamics. Machine learning is providing new and powerful techniques for both challenges. Dimensionality reduction methods are used for projecting dynamical methods in reduced form and these methods perform computational efficiency on real-world data.
引用
收藏
页码:2635 / 2644
页数:10
相关论文
共 33 条
  • [1] [Anonymous], 2017, COMMUN MATH STAT
  • [2] Multi-Choice Wavelet Thresholding Based Binary Classification Method
    Baek, Seung Hyun
    Garcia-Diaz, Alberto
    Dai, Yuanshun
    [J]. METHODOLOGY-EUROPEAN JOURNAL OF RESEARCH METHODS FOR THE BEHAVIORAL AND SOCIAL SCIENCES, 2020, 16 (02) : 127 - 146
  • [3] Dynamic Mode Decomposition for Compressive System Identification
    Bai, Zhe
    Kaiser, Eurika
    Proctor, Joshua L.
    Kutz, J. Nathan
    Brunton, Steven L.
    [J]. AIAA JOURNAL, 2020, 58 (02) : 561 - 574
  • [4] Boots B., 2011, Proceedings of the 25th International Conference on Artificial Intelligence, P293
  • [5] Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control
    Brunton, Steven L.
    Brunton, Bingni W.
    Proctor, Joshua L.
    Kutz, J. Nathan
    [J]. PLOS ONE, 2016, 11 (02):
  • [6] Brunton Steven L., 2017, J PHYS-MATER, V2, P1
  • [7] Data-driven vision-based inspection for reinforced concrete beams and slabs: Quantitative damage and load estimation
    Davoudi, Rouzbeh
    Miller, Gregory R.
    Kutz, J. Nathan
    [J]. AUTOMATION IN CONSTRUCTION, 2018, 96 : 292 - 309
  • [8] Dsilva Carmeline J., SIAM J APPL DYNAMICA, V15, P1327
  • [9] Randomized CP tensor decomposition
    Erichson, N. Benjamin
    Manohar, Krithika
    Brunton, Steven L.
    Kutz, J. Nathan
    [J]. MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2020, 1 (02):
  • [10] SPARSE PRINCIPAL COMPONENT ANALYSIS VIA VARIABLE PROJECTION
    Erichson, N. Benjamin
    Zheng, Peng
    Manohar, Krithika
    Brunton, Steven L.
    Kutz, J. Nathan
    Aravkin, Aleksandr Y.
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2020, 80 (02) : 977 - 1002