Development of Toughened Blends of Poly(lactic acid) and Poly(butylene adipate-co-terephthalate) for 3D Printing Applications: Compatibilization Methods and Material Performance Evaluation

被引:90
|
作者
Andrzejewski, Jacek [1 ,3 ]
Cheng, Joyce [2 ]
Anstey, Andrew [1 ]
Mohanty, Amar K. [1 ,2 ]
Misra, Manjusri [1 ,2 ]
机构
[1] Univ Guelph, Bioprod Discovery & Dev Ctr, Dept Plant Agr, Guelph, ON N1G 2W1, Canada
[2] Univ Guelph, Sch Engn, Guelph, ON N1G 2W1, Canada
[3] Poznan Univ Tech, Fac Mech Engn, Polymer Proc Div, Poznan 61138, Poland
基金
加拿大自然科学与工程研究理事会;
关键词
PLA; PBAT; polymer blends; FDM printing; impact toughness; CHAIN BRANCHED POLY(L-LACTIDE)S; PLA/PBAT BLOWN FILMS; POLY LACTIC-ACID; MECHANICAL-PROPERTIES; REACTIVE EXTRUSION; PHASE MORPHOLOGY; IMPACT STRENGTH; BINARY BLENDS; PLA-PBAT; CRYSTALLIZATION;
D O I
10.1021/acssuschemeng.9b04925
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The research presented in this article discusses the subject of poly(lactic acid) (PLA) modification via reactive mixing with the poly(butylene adipate-co-terephthalate) (PBAT) copolymer for 3D printing applications. Filaments suitable for fused deposition modeling were prepared from blends of PLA containing 10, 20, and 30% by weight of PBAT. Mechanical testing clearly indicated that the blending with PBAT effectively increases the impact strength of PLA, from an initial value of approximately 30 J/m to more than 700 J/m for the optimized PLA/PBAT (30%) chain extender-modified blend. The addition of the multifunctional chain extender (ESA) also has a positive effect on the rheological profile of the PLA/PBAT materials, which facilitates both the production process of the extruded filament and the maintenance of a stable width of the printed material path. Despite the use of a significant PBAT content, the analysis of thermomechanical properties did not show any significant deterioration in the thermal resistance of the materials, while a detailed differential scanning calorimetry analysis indicates a small tendency to nucleate the PLA structure by PBAT inclusions. The structural analysis of scanning electron microscopy clearly indicates a change in the mechanism of deformation from a brittle fracture for pure PLA to a more favorable shear yielding for PBAT-rich blends. The comparison of the properties of printed and injected PLA/PBAT blends indicates the possibility of obtaining similar or in some respects better mechanical properties, especially for ESA-modified samples.
引用
收藏
页码:6576 / 6589
页数:14
相关论文
共 50 条
  • [41] Compatibility and Impact Properties of Poly(lactic acid)/Poly(butylene adipate-co-terephthalate) Blend Using Poly(butyl acrylate)
    Lee, Jae Bin
    Kim, Do Young
    Nam, KiBeom
    Seo, Kwan Ho
    Lee, Dong Yun
    POLYMER-KOREA, 2020, 44 (05) : 689 - 694
  • [42] Microcellular extrusion foaming of poly(lactide)/poly(butylene adipate-co-terephthalate) blends
    Pilla, Srikanth
    Kim, Seong G.
    Auer, George K.
    Gong, Shaoqin
    Park, Chul B.
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2010, 30 (02): : 255 - 262
  • [43] Morphological and mechanical properties of biodegradable poly(glycolic acid)/poly(butylene adipate-co-terephthalate) blends with in situ compatibilization
    Wang, Rong
    Sun, Xiaojie
    Chen, Lanlan
    Liang, Wenbin
    RSC ADVANCES, 2021, 11 (03) : 1241 - 1249
  • [44] Functionalization of poly (butylene adipate-co-terephthalate) and its toughening effect on poly (lactic acid)
    Zhang, Guangxiang
    Li, Hua
    Jiang, Wenxin
    Han, Xiangyan
    Hu, Yuexin
    Han, Yuanyuan
    Zhao, Guiyan
    Feng, Yulin
    EUROPEAN POLYMER JOURNAL, 2024, 206
  • [45] Effectiveness of modified lignin on poly(butylene adipate-co-terephthalate)/poly(lactic acid) mulch film performance
    Barros, Janetty J. P.
    Oliveira, Rene R.
    Luna, Carlos B. B.
    Wellen, Renate M. R.
    Moura, Esperidiana A. B.
    JOURNAL OF APPLIED POLYMER SCIENCE, 2023, 140 (46)
  • [46] Effect of ultrasound on the properties of biodegradable polymer blends of poly(lactic acid) with poly(butylene adipate-co-terephthalate)
    Sangmook Lee
    Youngjoo Lee
    Jae Wook Lee
    Macromolecular Research, 2007, 15 : 44 - 50
  • [47] High-performance and durable fibrous poly(glycolic acid)/poly(butylene adipate-co-terephthalate) blends by reactive compatibilization and solid-state drawing
    Niu, Deyu
    Li, Jiaxuan
    Xu, Pengwu
    Liu, Tianxi
    Yang, Weijun
    Wang, Zhenyu
    Ma, Piming
    POLYMER DEGRADATION AND STABILITY, 2023, 210
  • [48] Plasticization Effect of Poly(Lactic Acid) in the Poly(Butylene Adipate-co-Terephthalate) Blown Film for Tear Resistance Improvement
    Kim, Do Young
    Lee, Jae Bin
    Lee, Dong Yun
    Seo, Kwan Ho
    POLYMERS, 2020, 12 (09)
  • [49] Effect of ultrasound on the properties of biodegradable polymer blends of poly(lactic acid) with poly(butylene adipate-co-terephthalate)
    Lee, Sangmook
    Lee, Youngjoo
    Lee, Jae Wook
    MACROMOLECULAR RESEARCH, 2007, 15 (01) : 44 - 50
  • [50] Biodegradable blends of poly(butylene adipate-co-terephthalate) and polyglycolic acid with enhanced mechanical, rheological and barrier performances
    Shen, Jianing
    Wang, Kai
    Ma, Zhao
    Xu, Nai
    Pang, Sujuan
    Pan, Lisha
    JOURNAL OF APPLIED POLYMER SCIENCE, 2021, 138 (43)